Dwork hypersurfaces of degree six and Greene’s hypergeometric function

IF 0.5 4区 数学 Q3 MATHEMATICS
Satoshi Kumabe
{"title":"Dwork hypersurfaces of degree six and Greene’s hypergeometric function","authors":"Satoshi Kumabe","doi":"10.32917/h2020097","DOIUrl":null,"url":null,"abstract":"In this paper, we give a formula for the number of rational points on the Dwork hypersurfaces of degree six over finite fields by using Greene's finite-field hypergeometric function, which is a generalization of Goodson's formula for the Dwork hypersurfaces of degree four [1, Theorem 1.1]. Our formula is also a higher-dimensional and a finite field analogue of MatsumotoTerasoma-Yamazaki's formula. Furthermore, we also explain the relation between our formula and Miyatani's formula.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":"47 18","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2020097","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we give a formula for the number of rational points on the Dwork hypersurfaces of degree six over finite fields by using Greene's finite-field hypergeometric function, which is a generalization of Goodson's formula for the Dwork hypersurfaces of degree four [1, Theorem 1.1]. Our formula is also a higher-dimensional and a finite field analogue of MatsumotoTerasoma-Yamazaki's formula. Furthermore, we also explain the relation between our formula and Miyatani's formula.
六次Dwork超曲面与Greene超几何函数
本文利用Greene的有限域超几何函数,推广了Goodson关于四次Dwork超曲面的公式[1,定理1.1],给出了有限域上六次Dwork超曲面上有理点个数的公式。我们的公式也是MatsumotoTerasoma-Yamazaki公式的高维有限域模拟。此外,我们还解释了我们的公式与Miyatani公式的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信