{"title":"Topology of leaves for minimal laminations by non-simply-connected hyperbolic surfaces","authors":"S. Alvarez, J. Brum","doi":"10.4171/ggd/645","DOIUrl":null,"url":null,"abstract":"We give the topological obstructions to be a leaf in a minimal lamination by hyperbolic surfaces whose generic leaf is homeomorphic to a Cantor tree. Then, we show that all allowed topological types can be simultaneously embedded in the same lamination. This result, together with results of Alvarez-Brum-Martinez-Potrie and Blanc, complete the panorama of understanding which topological surfaces can be leaves in minimal hyperbolic surface laminations when the topology of the generic leaf is given. In all cases, all possible topologies can be realized simultaneously.","PeriodicalId":55084,"journal":{"name":"Groups Geometry and Dynamics","volume":"35 20","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Geometry and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/645","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We give the topological obstructions to be a leaf in a minimal lamination by hyperbolic surfaces whose generic leaf is homeomorphic to a Cantor tree. Then, we show that all allowed topological types can be simultaneously embedded in the same lamination. This result, together with results of Alvarez-Brum-Martinez-Potrie and Blanc, complete the panorama of understanding which topological surfaces can be leaves in minimal hyperbolic surface laminations when the topology of the generic leaf is given. In all cases, all possible topologies can be realized simultaneously.
期刊介绍:
Groups, Geometry, and Dynamics is devoted to publication of research articles that focus on groups or group actions as well as articles in other areas of mathematics in which groups or group actions are used as a main tool. The journal covers all topics of modern group theory with preference given to geometric, asymptotic and combinatorial group theory, dynamics of group actions, probabilistic and analytical methods, interaction with ergodic theory and operator algebras, and other related fields.
Topics covered include:
geometric group theory;
asymptotic group theory;
combinatorial group theory;
probabilities on groups;
computational aspects and complexity;
harmonic and functional analysis on groups, free probability;
ergodic theory of group actions;
cohomology of groups and exotic cohomologies;
groups and low-dimensional topology;
group actions on trees, buildings, rooted trees.