Approximation of values of algebraic elements over the ring of power sums

IF 0.3 4区 数学 Q4 MATHEMATICS
C. Fuchs, Sebastian Heintze
{"title":"Approximation of values of algebraic elements over the ring of power sums","authors":"C. Fuchs, Sebastian Heintze","doi":"10.5802/jtnb.1247","DOIUrl":null,"url":null,"abstract":"Let $ \\mathbb{Q}\\mathcal{E}_{\\mathbb{Z}} $ be the set of power sums whose characteristic roots belong to $ \\mathbb{Z} $ and whose coefficients belong to $ \\mathbb{Q} $, i.e. $ G : \\mathbb{N} \\rightarrow \\mathbb{Q} $ satisfies \\begin{equation*} G(n) = G_n = b_1 c_1^n + \\cdots + b_h c_h^n \\end{equation*} with $ c_1,\\ldots,c_h \\in \\mathbb{Z} $ and $ b_1,\\ldots,b_h \\in \\mathbb{Q} $. Furthermore, let $ f \\in \\mathbb{Q}[x,y] $ be absolutely irreducible and $ \\alpha : \\mathbb{N} \\rightarrow \\overline{\\mathbb{Q}} $ be a solution $ y $ of $ f(G_n,y) = 0 $, i.e. $ f(G_n,\\alpha(n)) = 0 $ identically in $ n $. Then we will prove under suitable assumptions a lower bound, valid for all but finitely many positive integers $ n $, for the approximation error if $ \\alpha(n) $ is approximated by rational numbers with bounded denominator. After that we will also consider the case that $ \\alpha $ is a solution of \\begin{equation*} f(G_n^{(0)}, \\ldots, G_n^{(d)},y) = 0, \\end{equation*} i.e. defined by using more than one power sum and a polynomial $ f $ satisfying some suitable conditions. This extends results of Bugeaud, Corvaja, Luca, Scremin and Zannier.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"62 19","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1247","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $ \mathbb{Q}\mathcal{E}_{\mathbb{Z}} $ be the set of power sums whose characteristic roots belong to $ \mathbb{Z} $ and whose coefficients belong to $ \mathbb{Q} $, i.e. $ G : \mathbb{N} \rightarrow \mathbb{Q} $ satisfies \begin{equation*} G(n) = G_n = b_1 c_1^n + \cdots + b_h c_h^n \end{equation*} with $ c_1,\ldots,c_h \in \mathbb{Z} $ and $ b_1,\ldots,b_h \in \mathbb{Q} $. Furthermore, let $ f \in \mathbb{Q}[x,y] $ be absolutely irreducible and $ \alpha : \mathbb{N} \rightarrow \overline{\mathbb{Q}} $ be a solution $ y $ of $ f(G_n,y) = 0 $, i.e. $ f(G_n,\alpha(n)) = 0 $ identically in $ n $. Then we will prove under suitable assumptions a lower bound, valid for all but finitely many positive integers $ n $, for the approximation error if $ \alpha(n) $ is approximated by rational numbers with bounded denominator. After that we will also consider the case that $ \alpha $ is a solution of \begin{equation*} f(G_n^{(0)}, \ldots, G_n^{(d)},y) = 0, \end{equation*} i.e. defined by using more than one power sum and a polynomial $ f $ satisfying some suitable conditions. This extends results of Bugeaud, Corvaja, Luca, Scremin and Zannier.
幂和环上代数元素值的近似
设$ \mathbb{Q}\mathcal{E}_{\mathbb{Z}} $为特征根为$ \mathbb{Z} $且系数为$ \mathbb{Q} $的幂和集合,即$ G : \mathbb{N} \rightarrow \mathbb{Q} $满足\begin{equation*} G(n) = G_n = b_1 c_1^n + \cdots + b_h c_h^n \end{equation*}的$ c_1,\ldots,c_h \in \mathbb{Z} $和$ b_1,\ldots,b_h \in \mathbb{Q} $。进一步,设$ f \in \mathbb{Q}[x,y] $为绝对不可约,$ \alpha : \mathbb{N} \rightarrow \overline{\mathbb{Q}} $为$ f(G_n,y) = 0 $的解$ y $,即$ f(G_n,\alpha(n)) = 0 $与$ n $相同。然后,我们将在适当的假设下证明一个下界,适用于除有限多个正整数$ n $以外的所有整数,对于$ \alpha(n) $由有界分母的有理数近似时的近似误差。之后,我们还将考虑$ \alpha $是\begin{equation*} f(G_n^{(0)}, \ldots, G_n^{(d)},y) = 0, \end{equation*}的解的情况,即通过使用多个幂和和满足某些适当条件的多项式$ f $来定义。这扩展了Bugeaud、Corvaja、Luca、Scremin和Zannier的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信