Exerkines: A Crosstalk between Lactate Production, Exercise and Mental Health.

Alberto Souza Sá Filho, Silvio Roberto Barsanulfo, Sara Socorro Faria, Pedro Augusto Inacio, Farahnaz Ayatizadeh, Sérgio Machado
{"title":"Exerkines: A Crosstalk between Lactate Production, Exercise and Mental Health.","authors":"Alberto Souza Sá Filho, Silvio Roberto Barsanulfo, Sara Socorro Faria, Pedro Augusto Inacio, Farahnaz Ayatizadeh, Sérgio Machado","doi":"10.2174/0118715273250928231009054658","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle skeletal striated cells secrete a wide range of proteins called myokines or \"exerkines\", which in turn perform autocrine, paracrine, or endocrine functions. For being able to act in the communication between skeletal muscle, adipose tissue, and mainly the brain, exerkines play a prominent role and potential influence on health promotion. Furthermore, we detected in the literature that one of these potential therapeutic substances derived from muscle contraction is a molecule derived from glycolytic metabolism that in the past was largely marginalized, the lactate. Currently, studies are dedicated to examining the target structures for exerkines that may contribute to the maintenance and restoration of mental health. Thus, lactate appears to be recognized as a critical mediator of exercise-related changes and their health benefits, particularly in their role in communication and coordination between organs. It is inferred that the BDNF expression mechanism can be induced by lactate, which in turn derives from the activation of SIRT pathways 1 and 2 and activates the PGC1-α cascade. The behavior of lactate concentration is intensity-dependent, directly related to the type of fast-twitch fibers (type IIb) and the recruitment of these fibers would potentiate the responses in the brain. In this sense, high-intensity exercise would establish itself as an important strategy to be considered. Despite this understanding, there is still much to be done. However, lactate appears to be a highly promising exerkine for future research initiatives and a potential biomarker to reduce illness and promote mental health.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"1057-1060"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273250928231009054658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle skeletal striated cells secrete a wide range of proteins called myokines or "exerkines", which in turn perform autocrine, paracrine, or endocrine functions. For being able to act in the communication between skeletal muscle, adipose tissue, and mainly the brain, exerkines play a prominent role and potential influence on health promotion. Furthermore, we detected in the literature that one of these potential therapeutic substances derived from muscle contraction is a molecule derived from glycolytic metabolism that in the past was largely marginalized, the lactate. Currently, studies are dedicated to examining the target structures for exerkines that may contribute to the maintenance and restoration of mental health. Thus, lactate appears to be recognized as a critical mediator of exercise-related changes and their health benefits, particularly in their role in communication and coordination between organs. It is inferred that the BDNF expression mechanism can be induced by lactate, which in turn derives from the activation of SIRT pathways 1 and 2 and activates the PGC1-α cascade. The behavior of lactate concentration is intensity-dependent, directly related to the type of fast-twitch fibers (type IIb) and the recruitment of these fibers would potentiate the responses in the brain. In this sense, high-intensity exercise would establish itself as an important strategy to be considered. Despite this understanding, there is still much to be done. However, lactate appears to be a highly promising exerkine for future research initiatives and a potential biomarker to reduce illness and promote mental health.

运动:乳酸生产、运动和心理健康之间的对话。
肌肉骨骼纹状细胞分泌一系列被称为肌细胞因子或“运动因子”的蛋白质,这些蛋白质反过来执行自分泌、旁分泌或内分泌功能。运动因子能够参与骨骼肌、脂肪组织,主要是大脑之间的交流,在促进健康方面发挥着重要作用和潜在影响。此外,我们在文献中发现,这些源自肌肉收缩的潜在治疗物质之一是一种源自糖酵解代谢的分子,乳酸在过去很大程度上被边缘化。目前,研究致力于检查可能有助于维持和恢复心理健康的运动因子的目标结构。因此,乳酸似乎被认为是运动相关变化及其健康益处的关键介质,特别是在其在器官之间的沟通和协调中的作用。据推测,BDNF的表达机制可以由乳酸诱导,乳酸反过来源于SIRT通路1和2的激活,并激活PGC1-α级联。乳酸浓度的行为是强度依赖性的,与快速抽搐纤维(IIb型)的类型直接相关,这些纤维的募集会增强大脑中的反应。从这个意义上说,高强度运动将成为一项需要考虑的重要策略。尽管有这样的理解,仍有许多工作要做。然而,乳酸似乎是未来研究计划中一种非常有前途的运动因子,也是减少疾病和促进心理健康的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信