PERSISTENT PATH LAPLACIAN.

IF 1.7 Q2 MATHEMATICS, APPLIED
Rui Wang, Guo-Wei Wei
{"title":"PERSISTENT PATH LAPLACIAN.","authors":"Rui Wang,&nbsp;Guo-Wei Wei","doi":"10.3934/fods.2022015","DOIUrl":null,"url":null,"abstract":"<p><p>Path homology proposed by S.-T.Yau and his co-workers provides a new mathematical model for directed graphs and networks. Persistent path homology (PPH) extends the path homology with filtration to deal with asymmetry structures. However, PPH is constrained to purely topological persistence and cannot track the homotopic shape evolution of data during filtration. To overcome the limitation of PPH, persistent path Laplacian (PPL) is introduced to capture the shape evolution of data. PPL's harmonic spectra fully recover PPH's topological persistence and its non-harmonic spectra reveal the homotopic shape evolution of data during filtration.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"5 1","pages":"26-55"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575407/pdf/nihms-1888540.pdf","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2022015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

Abstract

Path homology proposed by S.-T.Yau and his co-workers provides a new mathematical model for directed graphs and networks. Persistent path homology (PPH) extends the path homology with filtration to deal with asymmetry structures. However, PPH is constrained to purely topological persistence and cannot track the homotopic shape evolution of data during filtration. To overcome the limitation of PPH, persistent path Laplacian (PPL) is introduced to capture the shape evolution of data. PPL's harmonic spectra fully recover PPH's topological persistence and its non-harmonic spectra reveal the homotopic shape evolution of data during filtration.

持久路径拉普拉斯算子。
Yau及其同事提出的路径同调为有向图和网络提供了一个新的数学模型。持久路径同源性(PPH)通过过滤来扩展路径同源性,以处理不对称结构。然而,PPH受限于纯拓扑持久性,并且不能在过滤过程中跟踪数据的同位形状演化。为了克服PPH的局限性,引入了持久路径拉普拉斯算子(PPL)来捕捉数据的形状演化。PPL的调和谱完全恢复了PPH的拓扑持久性,其非调和谱揭示了过滤过程中数据的同位形状演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信