SLICER: A Seamless Gene Deletion Method for Deinococcus radiodurans.

Q2 Agricultural and Biological Sciences
生物设计研究(英文) Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI:10.34133/bdr.0009
Stephanie L Brumwell, Katherine D Van Belois, Daniel P Nucifora, Bogumil J Karas
{"title":"SLICER: A Seamless Gene Deletion Method for <i>Deinococcus radiodurans</i>.","authors":"Stephanie L Brumwell,&nbsp;Katherine D Van Belois,&nbsp;Daniel P Nucifora,&nbsp;Bogumil J Karas","doi":"10.34133/bdr.0009","DOIUrl":null,"url":null,"abstract":"<p><p><i>Deinococcus radiodurans'</i> high resistance to various stressors combined with its ability to utilize sustainable carbon sources makes it an attractive bacterial chassis for synthetic biology and industrial bioproduction. However, to fully harness the capabilities of this microbe, further strain engineering and tool development are required. Methods for creating seamless genome modifications are an essential part of the microbial genetic toolkit to enable strain engineering. Here, we report the development of the SLICER method, which can be used to create seamless gene deletions in <i>D. radiodurans.</i> This process involves (a) integration of a seamless deletion cassette replacing a target gene, (b) introduction of the pSLICER plasmid to mediate cassette excision by I-<i>Sce</i>I endonuclease cleavage and homologous recombination, and (c) curing of the helper plasmid<i>.</i> We demonstrate the utility of SLICER for creating multiple gene deletions in <i>D. radiodurans</i> by sequentially targeting 5 putative restriction-modification system genes, recycling the same selective and screening markers for each subsequent deletion. While we observed no significant increase in transformation efficiency for most of the knockout strains, we demonstrated SLICER as a promising method to create a fully restriction-minus strain to expand the synthetic biology applications of <i>D. radiodurans,</i> including its potential as an in vivo DNA assembly platform.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bdr.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Deinococcus radiodurans' high resistance to various stressors combined with its ability to utilize sustainable carbon sources makes it an attractive bacterial chassis for synthetic biology and industrial bioproduction. However, to fully harness the capabilities of this microbe, further strain engineering and tool development are required. Methods for creating seamless genome modifications are an essential part of the microbial genetic toolkit to enable strain engineering. Here, we report the development of the SLICER method, which can be used to create seamless gene deletions in D. radiodurans. This process involves (a) integration of a seamless deletion cassette replacing a target gene, (b) introduction of the pSLICER plasmid to mediate cassette excision by I-SceI endonuclease cleavage and homologous recombination, and (c) curing of the helper plasmid. We demonstrate the utility of SLICER for creating multiple gene deletions in D. radiodurans by sequentially targeting 5 putative restriction-modification system genes, recycling the same selective and screening markers for each subsequent deletion. While we observed no significant increase in transformation efficiency for most of the knockout strains, we demonstrated SLICER as a promising method to create a fully restriction-minus strain to expand the synthetic biology applications of D. radiodurans, including its potential as an in vivo DNA assembly platform.

SLICER:一种针对耐辐射球菌的无缝基因缺失方法。
耐辐射球菌对各种压力源的高抵抗力,加上其利用可持续碳源的能力,使其成为合成生物学和工业生物生产的有吸引力的细菌底盘。然而,要充分利用这种微生物的能力,还需要进一步的菌株工程和工具开发。创建无缝基因组修饰的方法是实现菌株工程的微生物遗传工具包的重要组成部分。在这里,我们报道了SLICER方法的发展,该方法可用于在耐辐射D.中产生无缝基因缺失。该过程包括(a)整合取代靶基因的无缝缺失盒,(b)引入pSLICER质粒以通过I-SceI核酸内切酶切割和同源重组介导盒切除,以及(c)固化辅助质粒。我们通过顺序靶向5个假定的限制性修饰系统基因,为每个后续的缺失回收相同的选择性和筛选标记,证明了SLICER在耐辐射D.中产生多个基因缺失的实用性。虽然我们没有观察到大多数敲除菌株的转化效率显著提高,但我们证明SLICER是一种很有前途的方法,可以创建一种完全限制性的负菌株,以扩大耐辐射D.radiodurans的合成生物学应用,包括其作为体内DNA组装平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信