Stoichiometric Conversion of Maltose for Biomanufacturing by In Vitro Synthetic Enzymatic Biosystems.

Q2 Agricultural and Biological Sciences
生物设计研究(英文) Pub Date : 2022-07-01 eCollection Date: 2022-01-01 DOI:10.34133/2022/9806749
Guowei Li, Xinlei Wei, Ranran Wu, Wei Zhou, Yunjie Li, Zhiguang Zhu, Chun You
{"title":"Stoichiometric Conversion of Maltose for Biomanufacturing by <i>In Vitro</i> Synthetic Enzymatic Biosystems.","authors":"Guowei Li,&nbsp;Xinlei Wei,&nbsp;Ranran Wu,&nbsp;Wei Zhou,&nbsp;Yunjie Li,&nbsp;Zhiguang Zhu,&nbsp;Chun You","doi":"10.34133/2022/9806749","DOIUrl":null,"url":null,"abstract":"<p><p>Maltose is a natural <i>α</i>-(1,4)-linked disaccharide with wide applications in food industries and microbial fermentation. However, maltose has scarcely been used for <i>in vitro</i> biosynthesis, possibly because its phosphorylation by maltose phosphorylase (MP) yields <i>β</i>-glucose 1-phosphate (<i>β</i>-G1P) that cannot be utilized by <i>α</i>-phosphoglucomutase (<i>α</i>-PGM) commonly found in <i>in vitro</i> synthetic enzymatic biosystems previously constructed by our group. Herein, we designed an <i>in vitro</i> synthetic enzymatic reaction module comprised of MP, <i>β</i>-phosphoglucomutase (<i>β</i>-PGM), and polyphosphate glucokinase (PPGK) for the stoichiometric conversion of each maltose molecule to two glucose 6-phosphate (G6P) molecules. Based on this synthetic module, we further constructed two <i>in vitro</i> synthetic biosystems to produce bioelectricity and fructose 1,6-diphosphate (FDP), respectively. The 14-enzyme biobattery achieved a Faraday efficiency of 96.4% and a maximal power density of 0.6 mW/cm<sup>2</sup>, whereas the 5-enzyme <i>in vitro</i> FDP-producing biosystem yielded 187.0 mM FDP from 50 g/L (139 mM) maltose by adopting a fed-batch substrate feeding strategy. Our study not only suggests new application scenarios for maltose but also provides novel strategies for the high-efficient production of bioelectricity and value-added biochemicals.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2022 ","pages":"9806749"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521662/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2022/9806749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

Maltose is a natural α-(1,4)-linked disaccharide with wide applications in food industries and microbial fermentation. However, maltose has scarcely been used for in vitro biosynthesis, possibly because its phosphorylation by maltose phosphorylase (MP) yields β-glucose 1-phosphate (β-G1P) that cannot be utilized by α-phosphoglucomutase (α-PGM) commonly found in in vitro synthetic enzymatic biosystems previously constructed by our group. Herein, we designed an in vitro synthetic enzymatic reaction module comprised of MP, β-phosphoglucomutase (β-PGM), and polyphosphate glucokinase (PPGK) for the stoichiometric conversion of each maltose molecule to two glucose 6-phosphate (G6P) molecules. Based on this synthetic module, we further constructed two in vitro synthetic biosystems to produce bioelectricity and fructose 1,6-diphosphate (FDP), respectively. The 14-enzyme biobattery achieved a Faraday efficiency of 96.4% and a maximal power density of 0.6 mW/cm2, whereas the 5-enzyme in vitro FDP-producing biosystem yielded 187.0 mM FDP from 50 g/L (139 mM) maltose by adopting a fed-batch substrate feeding strategy. Our study not only suggests new application scenarios for maltose but also provides novel strategies for the high-efficient production of bioelectricity and value-added biochemicals.

Abstract Image

Abstract Image

Abstract Image

麦芽糖的化学计量转化用于体外合成酶生物系统的生物制造。
麦芽糖是一种天然的α-(1,4)连接二糖,在食品工业和微生物发酵中有着广泛的应用。然而,麦芽糖几乎没有被用于体外生物合成,可能是因为它被麦芽糖磷酸化酶(MP)磷酸化产生的β-葡萄糖1-磷酸(β-G1P)不能被我们小组先前构建的体外合成酶生物系统中常见的α-磷酸葡糖变位酶(α-PGM)利用。在此,我们设计了一个由MP、β-磷酸葡萄糖变位酶(β-PGM)和多磷酸葡萄糖激酶(PPGK)组成的体外合成酶促反应模块,用于将每个麦芽糖分子化学计量转化为两个葡萄糖-6-磷酸(G6P)分子。在这个合成模块的基础上,我们进一步构建了两个体外合成生物系统,分别产生生物电和1,6-二磷酸果糖(FDP)。14酶生物电池实现了96.4%的法拉第效率和0.6的最大功率密度 mW/cm2,而5-酶体外产生FDP的生物系统产生187.0 mM FDP,50 g/L(139 mM)麦芽糖。我们的研究不仅提出了麦芽糖的新应用场景,还为高效生产生物电和增值生物化学品提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信