Revealing CO2-Fixing SAR11 Bacteria in the Ocean by Raman-Based Single-Cell Metabolic Profiling and Genomics.

Q2 Agricultural and Biological Sciences
生物设计研究(英文) Pub Date : 2022-10-13 eCollection Date: 2022-01-01 DOI:10.34133/2022/9782712
Xiaoyan Jing, Yanhai Gong, Teng Xu, Paul A Davison, Craig MacGregor-Chatwin, C Neil Hunter, La Xu, Yu Meng, Yuetong Ji, Bo Ma, Jian Xu, Wei E Huang
{"title":"Revealing CO<sub>2</sub>-Fixing SAR11 Bacteria in the Ocean by Raman-Based Single-Cell Metabolic Profiling and Genomics.","authors":"Xiaoyan Jing,&nbsp;Yanhai Gong,&nbsp;Teng Xu,&nbsp;Paul A Davison,&nbsp;Craig MacGregor-Chatwin,&nbsp;C Neil Hunter,&nbsp;La Xu,&nbsp;Yu Meng,&nbsp;Yuetong Ji,&nbsp;Bo Ma,&nbsp;Jian Xu,&nbsp;Wei E Huang","doi":"10.34133/2022/9782712","DOIUrl":null,"url":null,"abstract":"<p><p>The majority of marine microbes remain uncultured, which hinders the identification and mining of CO<sub>2</sub>-fixing genes, pathways, and chassis from the oceans. Here, we investigated CO<sub>2</sub>-fixing microbes in seawater from the euphotic zone of the Yellow Sea of China by detecting and tracking their <sup>13</sup>C-bicarbonate (<sup>13</sup>C-HCO<sub>3</sub><sup>-</sup>) intake via single-cell Raman spectra (SCRS) analysis. The target cells were then isolated by Raman-activated Gravity-driven Encapsulation (RAGE), and their genomes were amplified and sequenced at one-cell resolution. The single-cell metabolism, phenotype and genome are consistent. We identified a not-yet-cultured <i>Pelagibacter</i> spp., which actively assimilates <sup>13</sup>C-HCO<sub>3</sub><sup>-</sup>, and also possesses most of the genes encoding enzymes of the Calvin-Benson cycle for CO<sub>2</sub> fixation, a complete gene set for a rhodopsin-based light-harvesting system, and the full genes necessary for carotenoid synthesis. The four proteorhodopsin (PR) genes identified in the <i>Pelagibacter</i> spp. were confirmed by heterologous expression in <i>E. coli</i>. These results suggest that hitherto uncultured <i>Pelagibacter</i> spp. uses light-powered metabolism to contribute to global carbon cycling.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2022 ","pages":"9782712"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521720/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2022/9782712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

The majority of marine microbes remain uncultured, which hinders the identification and mining of CO2-fixing genes, pathways, and chassis from the oceans. Here, we investigated CO2-fixing microbes in seawater from the euphotic zone of the Yellow Sea of China by detecting and tracking their 13C-bicarbonate (13C-HCO3-) intake via single-cell Raman spectra (SCRS) analysis. The target cells were then isolated by Raman-activated Gravity-driven Encapsulation (RAGE), and their genomes were amplified and sequenced at one-cell resolution. The single-cell metabolism, phenotype and genome are consistent. We identified a not-yet-cultured Pelagibacter spp., which actively assimilates 13C-HCO3-, and also possesses most of the genes encoding enzymes of the Calvin-Benson cycle for CO2 fixation, a complete gene set for a rhodopsin-based light-harvesting system, and the full genes necessary for carotenoid synthesis. The four proteorhodopsin (PR) genes identified in the Pelagibacter spp. were confirmed by heterologous expression in E. coli. These results suggest that hitherto uncultured Pelagibacter spp. uses light-powered metabolism to contribute to global carbon cycling.

Abstract Image

Abstract Image

Abstract Image

通过基于拉曼的单细胞代谢谱和基因组学揭示海洋中固定CO2的SAR11细菌。
大多数海洋微生物尚未培养,这阻碍了从海洋中识别和挖掘二氧化碳固定基因、途径和底盘。在这里,我们通过单细胞拉曼光谱(SCRS)分析检测和跟踪中国黄海透光带海水中的13C-碳酸氢盐(13C-HCO3-)摄入,研究了海水中的CO2固定微生物。然后通过拉曼激活的重力驱动封装(RAGE)分离靶细胞,并以一个细胞分辨率扩增和测序其基因组。单细胞代谢、表型和基因组是一致的。我们鉴定了一种尚未培养的Pelagibacter spp.,它能主动同化13C-HCO3-,还拥有编码卡尔文·本森循环CO2固定酶的大多数基因,一个基于视紫红质的光采集系统的完整基因集,以及类胡萝卜素合成所需的完整基因。在Pelagibacter spp.中鉴定的四个蛋白视紫红质(PR)基因通过在大肠杆菌中的异源表达得到了证实。这些结果表明,迄今为止未培养的Pelagibacter spp.利用光能代谢促进全球碳循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信