Altered Carbon Partitioning Enhances CO2 to Terpene Conversion in Cyanobacteria.

Q2 Agricultural and Biological Sciences
生物设计研究(英文) Pub Date : 2022-02-07 eCollection Date: 2022-01-01 DOI:10.34133/2022/9897425
Man Li, Bin Long, Susie Y Dai, James W Golden, Xin Wang, Joshua S Yuan
{"title":"Altered Carbon Partitioning Enhances CO<sub>2</sub> to Terpene Conversion in Cyanobacteria.","authors":"Man Li,&nbsp;Bin Long,&nbsp;Susie Y Dai,&nbsp;James W Golden,&nbsp;Xin Wang,&nbsp;Joshua S Yuan","doi":"10.34133/2022/9897425","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthetic terpene production represents one of the most carbon and energy-efficient routes for converting CO<sub>2</sub> into hydrocarbon. In photosynthetic organisms, metabolic engineering has led to limited success in enhancing terpene productivity, partially due to the low carbon partitioning. In this study, we employed systems biology analysis to reveal the strong competition for carbon substrates between primary metabolism (e.g., sucrose, glycogen, and protein synthesis) and terpene biosynthesis in <i>Synechococcus elongatus</i> PCC 7942. We then engineered key \"source\" and \"sink\" enzymes. The \"source\" limitation was overcome by knocking out either sucrose or glycogen biosynthesis to significantly enhance limonene production <i>via</i> altered carbon partitioning. Moreover, a fusion enzyme complex with geranyl diphosphate synthase (GPPS) and limonene synthase (LS) was designed to further improve pathway kinetics and substrate channeling. The synergy between \"source\" and \"sink\" achieved a limonene titer of 21.0 mg/L. Overall, the study demonstrates that balancing carbon flux between primary and secondary metabolism can be an effective approach to enhance terpene bioproduction in cyanobacteria. The design of \"source\" and \"sink\" synergy has significant potential in improving natural product yield in photosynthetic species.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2022 ","pages":"9897425"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521692/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2022/9897425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

Photosynthetic terpene production represents one of the most carbon and energy-efficient routes for converting CO2 into hydrocarbon. In photosynthetic organisms, metabolic engineering has led to limited success in enhancing terpene productivity, partially due to the low carbon partitioning. In this study, we employed systems biology analysis to reveal the strong competition for carbon substrates between primary metabolism (e.g., sucrose, glycogen, and protein synthesis) and terpene biosynthesis in Synechococcus elongatus PCC 7942. We then engineered key "source" and "sink" enzymes. The "source" limitation was overcome by knocking out either sucrose or glycogen biosynthesis to significantly enhance limonene production via altered carbon partitioning. Moreover, a fusion enzyme complex with geranyl diphosphate synthase (GPPS) and limonene synthase (LS) was designed to further improve pathway kinetics and substrate channeling. The synergy between "source" and "sink" achieved a limonene titer of 21.0 mg/L. Overall, the study demonstrates that balancing carbon flux between primary and secondary metabolism can be an effective approach to enhance terpene bioproduction in cyanobacteria. The design of "source" and "sink" synergy has significant potential in improving natural product yield in photosynthetic species.

Abstract Image

Abstract Image

Abstract Image

改变碳分配提高了蓝藻中CO2转化为萜烯的能力。
光合萜烯生产是将二氧化碳转化为碳氢化合物的最具碳和能效的途径之一。在光合生物中,代谢工程在提高萜烯生产力方面的成功有限,部分原因是低碳分配。在本研究中,我们采用系统生物学分析来揭示细长聚球藻PCC 7942中初级代谢(如蔗糖、糖原和蛋白质合成)和萜烯生物合成之间对碳底物的强烈竞争。然后,我们设计了关键的“源”和“汇”酶。通过敲除蔗糖或糖原生物合成,通过改变碳分配显著提高柠檬烯的产量,克服了“来源”限制。此外,还设计了一种与香叶基二磷酸合成酶(GPPS)和柠檬烯合成酶(LS)的融合酶复合物,以进一步改善通路动力学和底物通道。“源”和“汇”之间的协同作用实现了21.0的柠檬烯效价 mg/L。总的来说,这项研究表明,平衡初级代谢和次级代谢之间的碳流量是提高蓝藻中萜烯生物生产的有效方法。“源”和“汇”协同设计在提高光合物种的天然产物产量方面具有重大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信