Activating Silent Glycolysis Bypasses in Escherichia coli.

Q2 Agricultural and Biological Sciences
生物设计研究(英文) Pub Date : 2022-05-11 eCollection Date: 2022-01-01 DOI:10.34133/2022/9859643
Camillo Iacometti, Katharina Marx, Maria Hönick, Viktoria Biletskaia, Helena Schulz-Mirbach, Beau Dronsella, Ari Satanowski, Valérie A Delmas, Anne Berger, Ivan Dubois, Madeleine Bouzon, Volker Döring, Elad Noor, Arren Bar-Even, Steffen N Lindner
{"title":"Activating Silent Glycolysis Bypasses in <i>Escherichia coli</i>.","authors":"Camillo Iacometti,&nbsp;Katharina Marx,&nbsp;Maria Hönick,&nbsp;Viktoria Biletskaia,&nbsp;Helena Schulz-Mirbach,&nbsp;Beau Dronsella,&nbsp;Ari Satanowski,&nbsp;Valérie A Delmas,&nbsp;Anne Berger,&nbsp;Ivan Dubois,&nbsp;Madeleine Bouzon,&nbsp;Volker Döring,&nbsp;Elad Noor,&nbsp;Arren Bar-Even,&nbsp;Steffen N Lindner","doi":"10.34133/2022/9859643","DOIUrl":null,"url":null,"abstract":"<p><p>All living organisms share similar reactions within their central metabolism to provide precursors for all essential building blocks and reducing power. To identify whether alternative metabolic routes of glycolysis can operate in <i>E. coli</i>, we complementarily employed <i>in silico</i> design, rational engineering, and adaptive laboratory evolution. First, we used a genome-scale model and identified two potential pathways within the metabolic network of this organism replacing canonical Embden-Meyerhof-Parnas (EMP) glycolysis to convert phosphosugars into organic acids. One of these glycolytic routes proceeds via methylglyoxal and the other via serine biosynthesis and degradation. Then, we implemented both pathways in <i>E. coli</i> strains harboring defective EMP glycolysis. Surprisingly, the pathway via methylglyoxal seemed to immediately operate in a triosephosphate isomerase deletion strain cultivated on glycerol. By contrast, in a phosphoglycerate kinase deletion strain, the overexpression of methylglyoxal synthase was necessary to restore growth of the strain. Furthermore, we engineered the \"serine shunt\" which converts 3-phosphoglycerate via serine biosynthesis and degradation to pyruvate, bypassing an enolase deletion. Finally, to explore which of these alternatives would emerge by natural selection, we performed an adaptive laboratory evolution study using an enolase deletion strain. Our experiments suggest that the evolved mutants use the serine shunt. Our study reveals the flexible repurposing of metabolic pathways to create new metabolite links and rewire central metabolism.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2022 ","pages":"9859643"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521649/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2022/9859643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

All living organisms share similar reactions within their central metabolism to provide precursors for all essential building blocks and reducing power. To identify whether alternative metabolic routes of glycolysis can operate in E. coli, we complementarily employed in silico design, rational engineering, and adaptive laboratory evolution. First, we used a genome-scale model and identified two potential pathways within the metabolic network of this organism replacing canonical Embden-Meyerhof-Parnas (EMP) glycolysis to convert phosphosugars into organic acids. One of these glycolytic routes proceeds via methylglyoxal and the other via serine biosynthesis and degradation. Then, we implemented both pathways in E. coli strains harboring defective EMP glycolysis. Surprisingly, the pathway via methylglyoxal seemed to immediately operate in a triosephosphate isomerase deletion strain cultivated on glycerol. By contrast, in a phosphoglycerate kinase deletion strain, the overexpression of methylglyoxal synthase was necessary to restore growth of the strain. Furthermore, we engineered the "serine shunt" which converts 3-phosphoglycerate via serine biosynthesis and degradation to pyruvate, bypassing an enolase deletion. Finally, to explore which of these alternatives would emerge by natural selection, we performed an adaptive laboratory evolution study using an enolase deletion strain. Our experiments suggest that the evolved mutants use the serine shunt. Our study reveals the flexible repurposing of metabolic pathways to create new metabolite links and rewire central metabolism.

Abstract Image

Abstract Image

Abstract Image

激活大肠杆菌中的沉默糖酵解旁路。
所有生物体在其中央代谢中都有相似的反应,为所有重要的构建块和还原力提供前体。为了确定糖酵解的替代代谢途径是否可以在大肠杆菌中发挥作用,我们在计算机设计、合理工程和适应性实验室进化方面进行了补充。首先,我们使用了基因组规模的模型,并在该生物体的代谢网络中确定了两条潜在的途径,取代了经典的Embden-Meyerhof-Parnas(EMP)糖酵解,将磷酸糖转化为有机酸。其中一条糖酵解途径通过甲基乙二醛进行,另一条途径通过丝氨酸生物合成和降解进行。然后,我们在含有EMP糖酵解缺陷的大肠杆菌菌株中实现了这两种途径。令人惊讶的是,在甘油培养的磷酸三糖异构酶缺失菌株中,通过甲基乙二醛的途径似乎立即发挥作用。相反,在磷酸甘油酸激酶缺失菌株中,甲基乙二醛合酶的过表达对于恢复菌株的生长是必要的。此外,我们设计了“丝氨酸分流器”,通过丝氨酸生物合成和降解将3-磷酸甘油酸转化为丙酮酸,绕过烯醇化酶缺失。最后,为了探索这些替代品中的哪一种会通过自然选择出现,我们使用烯醇化酶缺失菌株进行了适应性实验室进化研究。我们的实验表明,进化出的突变体使用丝氨酸分流器。我们的研究揭示了代谢途径的灵活再利用,以创建新的代谢联系并重新连接中央代谢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信