Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal.

Q2 Agricultural and Biological Sciences
生物设计研究(英文) Pub Date : 2021-11-29 eCollection Date: 2021-01-01 DOI:10.34133/2021/9798714
Xiaohan Yang, Degao Liu, Haiwei Lu, David J Weston, Jin-Gui Chen, Wellington Muchero, Stanton Martin, Yang Liu, Md Mahmudul Hassan, Guoliang Yuan, Udaya C Kalluri, Timothy J Tschaplinski, Julie C Mitchell, Stan D Wullschleger, Gerald A Tuskan
{"title":"Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal.","authors":"Xiaohan Yang, Degao Liu, Haiwei Lu, David J Weston, Jin-Gui Chen, Wellington Muchero, Stanton Martin, Yang Liu, Md Mahmudul Hassan, Guoliang Yuan, Udaya C Kalluri, Timothy J Tschaplinski, Julie C Mitchell, Stan D Wullschleger, Gerald A Tuskan","doi":"10.34133/2021/9798714","DOIUrl":null,"url":null,"abstract":"<p><p>A grand challenge facing society is climate change caused mainly by rising CO<sub>2</sub> concentration in Earth's atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO<sub>2</sub> via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO<sub>2</sub> removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO<sub>2</sub> capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2021 ","pages":"9798714"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2021/9798714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

A grand challenge facing society is climate change caused mainly by rising CO2 concentration in Earth's atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.

Abstract Image

Abstract Image

Abstract Image

用于植物生物设计的生物部件,以增强陆地二氧化碳去除。
社会面临的一个重大挑战是主要由地球大气中二氧化碳浓度上升引起的气候变化。陆地植物是全球碳循环的关键,具有通过光合作用捕获二氧化碳并将捕获的碳转移到茎、根和土壤中长期储存的独特能力。然而,许多研究人员假设,由于光合效率低、长期储存的碳分配有限以及对生物经济的适应性低,现有的陆地植物无法满足未来缓解气候变化的二氧化碳去除的宏伟要求。为了解决这些局限性,迫切需要通过生物系统设计(或生物设计)对现有植物进行遗传改良或构建新的植物系统。在这里,我们总结了陆地植物二氧化碳去除(CDR)特性的生物工程的已验证生物部分(如蛋白质编码基因和非编码RNA),以加速生物能源种植园和农业环境中的陆地脱碳,并促进充满活力的生物经济。具体而言,我们首先总结了基于植物的CDR的框架(例如,CO2捕获、迁移、储存和转化为增值产品)。然后,在这个框架中,我们重点介绍了一些具有代表性的生物学部分,并提供了实验证据。最后,我们讨论了在植物CDR工程中识别和管理生物部分的挑战和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信