Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations.

Pub Date : 2023-01-01 Epub Date: 2023-09-04 DOI:10.1007/s00605-023-01895-2
Victor Fadinger-Held, Sophie Frisch, Daniel Windisch
{"title":"Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations.","authors":"Victor Fadinger-Held,&nbsp;Sophie Frisch,&nbsp;Daniel Windisch","doi":"10.1007/s00605-023-01895-2","DOIUrl":null,"url":null,"abstract":"<p><p>Let <i>V</i> be a valuation ring of a global field <i>K</i>. We show that for all positive integers <i>k</i> and <math><mrow><mn>1</mn><mo><</mo><msub><mi>n</mi><mn>1</mn></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mi>n</mi><mi>k</mi></msub></mrow></math> there exists an integer-valued polynomial on <i>V</i>, that is, an element of <math><mrow><mrow><mspace></mspace><mtext>Int</mtext><mspace></mspace></mrow><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>f</mi><mo>∈</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>]</mo><mo>∣</mo><mi>f</mi><mo>(</mo><mi>V</mi><mo>)</mo><mo>⊆</mo><mi>V</mi><mo>}</mo></mrow></math>, which has precisely <i>k</i> essentially different factorizations into irreducible elements of <math><mrow><mrow><mspace></mspace><mtext>Int</mtext><mspace></mspace></mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></math> whose lengths are exactly <math><mrow><msub><mi>n</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>n</mi><mi>k</mi></msub></mrow></math>. In fact, we show more, namely that the same result holds true for every discrete valuation domain <i>V</i> with finite residue field such that the quotient field of <i>V</i> admits a valuation ring independent of <i>V</i> whose maximal ideal is principal or whose residue field is finite. If the quotient field of <i>V</i> is a purely transcendental extension of an arbitrary field, this property is satisfied. This solves an open problem proposed by Cahen, Fontana, Frisch and Glaz in these cases.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576700/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-023-01895-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let V be a valuation ring of a global field K. We show that for all positive integers k and 1<n1nk there exists an integer-valued polynomial on V, that is, an element of Int(V)={fK[X]f(V)V}, which has precisely k essentially different factorizations into irreducible elements of Int(V) whose lengths are exactly n1,,nk. In fact, we show more, namely that the same result holds true for every discrete valuation domain V with finite residue field such that the quotient field of V admits a valuation ring independent of V whose maximal ideal is principal or whose residue field is finite. If the quotient field of V is a purely transcendental extension of an arbitrary field, this property is satisfied. This solves an open problem proposed by Cahen, Fontana, Frisch and Glaz in these cases.

分享
查看原文
具有指定因子分解长度的全局域的赋值环上的整值多项式。
设V是全局域K的一个赋值环。我们证明了对于所有正整数K和1n1≤…≤nk,V上存在一个整数值多项式,即Int(V)={f∈K[X]Üf(V)⊆V}的一个元素,它具有精确的K个本质上不同的因子分解为Int(V)的不可约元素,其长度恰好为n1,…,nk。事实上,我们证明了更多,即对于每个具有有限剩余域的离散估值域V,同样的结果成立,使得V的商域允许独立于V的估值环,其最大理想是主或其剩余域是有限的。如果V的商域是任意域的纯超越扩展,则满足此性质。这解决了Cahen、Fontana、Frisch和Glaz在这些情况下提出的一个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信