Training a Hyperdimensional Computing Classifier Using a Threshold on Its Confidence

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Laura Smets;Werner Van Leekwijck;Ing Jyh Tsang;Steven Latré
{"title":"Training a Hyperdimensional Computing Classifier Using a Threshold on Its Confidence","authors":"Laura Smets;Werner Van Leekwijck;Ing Jyh Tsang;Steven Latré","doi":"10.1162/neco_a_01618","DOIUrl":null,"url":null,"abstract":"Hyperdimensional computing (HDC) has become popular for light-weight and energy-efficient machine learning, suitable for wearable Internet-of-Things devices and near-sensor or on-device processing. HDC is computationally less complex than traditional deep learning algorithms and achieves moderate to good classification performance. This letter proposes to extend the training procedure in HDC by taking into account not only wrongly classified samples but also samples that are correctly classified by the HDC model but with low confidence. We introduce a confidence threshold that can be tuned for each data set to achieve the best classification accuracy. The proposed training procedure is tested on UCIHAR, CTG, ISOLET, and HAND data sets for which the performance consistently improves compared to the baseline across a range of confidence threshold values. The extended training procedure also results in a shift toward higher confidence values of the correctly classified samples, making the classifier not only more accurate but also more confident about its predictions.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"35 12","pages":"2006-2023"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10355111/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

Hyperdimensional computing (HDC) has become popular for light-weight and energy-efficient machine learning, suitable for wearable Internet-of-Things devices and near-sensor or on-device processing. HDC is computationally less complex than traditional deep learning algorithms and achieves moderate to good classification performance. This letter proposes to extend the training procedure in HDC by taking into account not only wrongly classified samples but also samples that are correctly classified by the HDC model but with low confidence. We introduce a confidence threshold that can be tuned for each data set to achieve the best classification accuracy. The proposed training procedure is tested on UCIHAR, CTG, ISOLET, and HAND data sets for which the performance consistently improves compared to the baseline across a range of confidence threshold values. The extended training procedure also results in a shift toward higher confidence values of the correctly classified samples, making the classifier not only more accurate but also more confident about its predictions.
使用置信度阈值训练超维计算分类器。
超维计算(HDC)在轻量级和节能的机器学习中变得很流行,适用于可穿戴物联网设备和近传感器或设备上处理。HDC在计算上比传统的深度学习算法复杂,并且实现了中等到良好的分类性能。这封信建议扩展HDC中的训练程序,不仅要考虑错误分类的样本,还要考虑HDC模型正确分类但置信度低的样本。我们引入了一个置信阈值,可以对每个数据集进行调整,以实现最佳的分类精度。所提出的训练程序在UCIHAR、CTG、ISOLET和HAND数据集上进行了测试,在一系列置信阈值范围内,与基线相比,这些数据集的性能不断提高。扩展的训练过程还导致正确分类的样本向更高置信度值的转变,使分类器不仅更准确,而且对其预测更有信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信