Ammonia emissions from a dairy housing and wastewater treatment plant quantified with an inverse dispersion method accounting for deposition loss.

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Alex C Valach, Christoph Häni, Marcel Bühler, Joachim Mohn, Sabine Schrade, Thomas Kupper
{"title":"Ammonia emissions from a dairy housing and wastewater treatment plant quantified with an inverse dispersion method accounting for deposition loss.","authors":"Alex C Valach, Christoph Häni, Marcel Bühler, Joachim Mohn, Sabine Schrade, Thomas Kupper","doi":"10.1080/10962247.2023.2271426","DOIUrl":null,"url":null,"abstract":"<p><p>Ammonia (NH<sub>3</sub>) emissions negatively impact air, soil, and water quality, hence human health and biodiversity. Significant emissions, including the largest sources, originate from single or multiple structures, such as livestock facilities and wastewater treatment plants (WWTPs). The inverse dispersion method (IDM) is effective in measuring total emissions from such sources, although depositional loss between the source and point of measurement is often not accounted for. We applied IDM with a deposition correction to determine total emissions from a representative dairy housing and WWTP during several months in autumn and winter in Switzerland. Total emissions were 1.19 ± 0.48 and 2.27 ± 1.53 kg NH<sub>3</sub> d<sup>-1</sup> for the dairy housing and WWTP, respectively, which compared well with literature values, despite the paucity of WWTP data. A concurrent comparison with an inhouse tracer ratio method at the dairy housing indicated an offset of the IDM emissions by < 20%. Diurnal emission patterns were evident at both sites mostly driven by changes in air temperature with potential lag effects such as following sludge agitation. Modeled deposition corrections to adjust the concentration loss detected at the measurement point with the associated footprint were 22-28% of the total emissions and the cumulative fraction of deposition to emission modeled with distance from the source was between 7% and 12% for the measurement distances (60-150 m). Although estimates of depositional loss were plausible, the approach is still connected with substantial uncertainty, which calls for future validation measurements. Longer measurement periods encompassing more management activities and environmental conditions are required to assess predictor variable importance on emission dynamics. Combined, IDM with deposition correction will allow the determination of emission factors at reduced efforts and costs, thereby supporting the development and assessment of emission reducing methods and expand the data availability for emission inventories.<i>Implications</i>: Ammonia emissions must be measured to determine emission factors and reporting national inventories. Measurements from structures like farms and industrial plants are complex due to the many different emitting surfaces and the building configuration leading to a poor data availability. Micrometeorological methods provide high resolution emission data from the entire structure, but suffer from uncertainties, as the instruments must be placed at a distance from the structure resulting in a greater loss of the emitted ammonia via dry deposition before it reaches the measurement. This study constrains such emission measurements from a dairy housing and wastewater treatment plant by applying a simple correction to account for the deposition loss and compares the results to other methods.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"930-950"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Air & Waste Management Association","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10962247.2023.2271426","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia (NH3) emissions negatively impact air, soil, and water quality, hence human health and biodiversity. Significant emissions, including the largest sources, originate from single or multiple structures, such as livestock facilities and wastewater treatment plants (WWTPs). The inverse dispersion method (IDM) is effective in measuring total emissions from such sources, although depositional loss between the source and point of measurement is often not accounted for. We applied IDM with a deposition correction to determine total emissions from a representative dairy housing and WWTP during several months in autumn and winter in Switzerland. Total emissions were 1.19 ± 0.48 and 2.27 ± 1.53 kg NH3 d-1 for the dairy housing and WWTP, respectively, which compared well with literature values, despite the paucity of WWTP data. A concurrent comparison with an inhouse tracer ratio method at the dairy housing indicated an offset of the IDM emissions by < 20%. Diurnal emission patterns were evident at both sites mostly driven by changes in air temperature with potential lag effects such as following sludge agitation. Modeled deposition corrections to adjust the concentration loss detected at the measurement point with the associated footprint were 22-28% of the total emissions and the cumulative fraction of deposition to emission modeled with distance from the source was between 7% and 12% for the measurement distances (60-150 m). Although estimates of depositional loss were plausible, the approach is still connected with substantial uncertainty, which calls for future validation measurements. Longer measurement periods encompassing more management activities and environmental conditions are required to assess predictor variable importance on emission dynamics. Combined, IDM with deposition correction will allow the determination of emission factors at reduced efforts and costs, thereby supporting the development and assessment of emission reducing methods and expand the data availability for emission inventories.Implications: Ammonia emissions must be measured to determine emission factors and reporting national inventories. Measurements from structures like farms and industrial plants are complex due to the many different emitting surfaces and the building configuration leading to a poor data availability. Micrometeorological methods provide high resolution emission data from the entire structure, but suffer from uncertainties, as the instruments must be placed at a distance from the structure resulting in a greater loss of the emitted ammonia via dry deposition before it reaches the measurement. This study constrains such emission measurements from a dairy housing and wastewater treatment plant by applying a simple correction to account for the deposition loss and compares the results to other methods.

奶牛场和废水处理厂的氨排放量采用反向分散法进行量化,计算沉积损失。
氨(NH3)排放会对空气、土壤和水质产生负面影响,从而影响人类健康和生物多样性。包括最大来源在内的大量排放源于单个或多个结构,如畜牧设施和废水处理厂。逆扩散法(IDM)在测量此类源的总排放量方面是有效的,尽管通常没有考虑源和测量点之间的沉积损失。我们应用IDM和沉积校正来确定瑞士秋冬几个月内具有代表性的奶牛场和污水处理厂的总排放量。总排放量为1.19 ± 0.48和2.27 ± 1.53 kg NH3 d-1分别用于奶牛场和污水处理厂,尽管缺乏污水处理厂的数据,但与文献值比较良好。与奶牛场内部示踪剂比例法同时进行的比较表明,IDM排放量的偏移量为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Air & Waste Management Association
Journal of the Air & Waste Management Association ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
5.00
自引率
3.70%
发文量
95
审稿时长
3 months
期刊介绍: The Journal of the Air & Waste Management Association (J&AWMA) is one of the oldest continuously published, peer-reviewed, technical environmental journals in the world. First published in 1951 under the name Air Repair, J&AWMA is intended to serve those occupationally involved in air pollution control and waste management through the publication of timely and reliable information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信