{"title":"The formate dehydrogenase enhances aluminum tolerance of tobacco.","authors":"Yonghong Xie, Yunmin Wei, Rongrong Han, Shitian Yu, Hui Xu, Caode Jiang, Yongxiong Yu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The formate dehydrogenase (FDH) is regarded as a universal stress protein involved in various plant abiotic stress responses. This study aims to ascertain GmFDH function in conferring tolerance to aluminum (Al) stress. The bioinformatics analysis demonstrates that <i>GmFDH</i> from Tamba black soybean (TBS) encodes FDH. Quantitative reverse transcription-PCR (qRT-PCR) showed that <i>GmFDH</i> expression was induced by Al stress with a concentration-time-specific pattern. Moreover, Al stress promotes formate content and activates FDH activity. Further studies revealed that <i>GmFDH</i> overexpression alleviated root growth of tobacco under Al stress inhibition and reduced Al and ROS accumulation in roots. In addition, transgenic tobacco had much more root citrate exudation and much higher activity of antioxidant enzymes than wild type. Moreover, under Al stress, <i>NtMATE</i> and <i>NtALS3</i> expression showed no changes in wild type and overexpression lines, suggesting that here the known Al-resistant mechanisms are not involved. However citrate synthase activity is higher in transgenic tobaccos than that of wild type, which might be the reason for citrate secretion increase. Thus, the increased Al tolerance of <i>GmFDH</i> overexpression lines is likely attributable to enhanced activities of antioxidant enzymes and promoting citrate secretion. Taken together, our findings advance understanding of higher plant Al toxicity mechanisms and suggest a possible new route towards the improvement of plant growth under Al stress.</p>","PeriodicalId":15907,"journal":{"name":"Journal of Genetics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
The formate dehydrogenase (FDH) is regarded as a universal stress protein involved in various plant abiotic stress responses. This study aims to ascertain GmFDH function in conferring tolerance to aluminum (Al) stress. The bioinformatics analysis demonstrates that GmFDH from Tamba black soybean (TBS) encodes FDH. Quantitative reverse transcription-PCR (qRT-PCR) showed that GmFDH expression was induced by Al stress with a concentration-time-specific pattern. Moreover, Al stress promotes formate content and activates FDH activity. Further studies revealed that GmFDH overexpression alleviated root growth of tobacco under Al stress inhibition and reduced Al and ROS accumulation in roots. In addition, transgenic tobacco had much more root citrate exudation and much higher activity of antioxidant enzymes than wild type. Moreover, under Al stress, NtMATE and NtALS3 expression showed no changes in wild type and overexpression lines, suggesting that here the known Al-resistant mechanisms are not involved. However citrate synthase activity is higher in transgenic tobaccos than that of wild type, which might be the reason for citrate secretion increase. Thus, the increased Al tolerance of GmFDH overexpression lines is likely attributable to enhanced activities of antioxidant enzymes and promoting citrate secretion. Taken together, our findings advance understanding of higher plant Al toxicity mechanisms and suggest a possible new route towards the improvement of plant growth under Al stress.
期刊介绍:
The journal retains its traditional interest in evolutionary research that is of relevance to geneticists, even if this is not explicitly genetical in nature. The journal covers all areas of genetics and evolution,including molecular genetics and molecular evolution.It publishes papers and review articles on current topics, commentaries and essayson ideas and trends in genetics and evolutionary biology, historical developments, debates and book reviews. From 2010 onwards, the journal has published a special category of papers termed ‘Online Resources’. These are brief reports on the development and the routine use of molecular markers for assessing genetic variability within and among species. Also published are reports outlining pedagogical approaches in genetics teaching.