Deepak Sharma, Mini Sharma, Prabhjot Kaur, Soumi Awasthy, Shubham Kaushal, Maria D'Souza, Ganesh Bagler, Shilpi Modi
{"title":"Camouflage Detection and Its Association with Cognitive Style: A Functional Connectivity Study.","authors":"Deepak Sharma, Mini Sharma, Prabhjot Kaur, Soumi Awasthy, Shubham Kaushal, Maria D'Souza, Ganesh Bagler, Shilpi Modi","doi":"10.1089/brain.2023.0044","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Individual differences exist in performance in tasks that require visual search, such as camouflage detection (CD). Field dependence/independence (FD/I), as assessed using the Group Embedded Figures Test (GEFT), is an extensively studied dimension of cognitive style that classifies participants based on their visual perceptual styles. <b><i>Materials and Methods:</i></b> In the present study, we utilized fMRI on 46 healthy participants to investigate the underlying neural mechanisms specific to the cognitive styles of FD/FI while performing a CD task using both activation magnitude and an exploratory functional connectivity (FC) analysis. Group differences between high and low performers on the two extremes of the accuracy continuum of GEFT were studied. <b><i>Results:</i></b> No statistically significant group differences were observed using whole-brain voxel-wise comparison. However, the exploratory FC analysis revealed an enhanced communication between various regions subserving the cognitive traits required for visual search by FI participants over and above their FD counterparts. <b><i>Conclusion:</i></b> These enhanced connectivities suggest additional recruitment of cognitive functions to provide computational support that might facilitate superior performance in CD task by the participants who display a field-independent cognitive style.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"598-609"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Individual differences exist in performance in tasks that require visual search, such as camouflage detection (CD). Field dependence/independence (FD/I), as assessed using the Group Embedded Figures Test (GEFT), is an extensively studied dimension of cognitive style that classifies participants based on their visual perceptual styles. Materials and Methods: In the present study, we utilized fMRI on 46 healthy participants to investigate the underlying neural mechanisms specific to the cognitive styles of FD/FI while performing a CD task using both activation magnitude and an exploratory functional connectivity (FC) analysis. Group differences between high and low performers on the two extremes of the accuracy continuum of GEFT were studied. Results: No statistically significant group differences were observed using whole-brain voxel-wise comparison. However, the exploratory FC analysis revealed an enhanced communication between various regions subserving the cognitive traits required for visual search by FI participants over and above their FD counterparts. Conclusion: These enhanced connectivities suggest additional recruitment of cognitive functions to provide computational support that might facilitate superior performance in CD task by the participants who display a field-independent cognitive style.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.