Pei Wang, Meiting Chen, Yaying Hou, Jun Luan, Ruili Liu, Liuqing Chen, Min Hu, Qiuliyang Yu
{"title":"Fingerstick blood assay maps real-world NAD+ disparity across gender and age","authors":"Pei Wang, Meiting Chen, Yaying Hou, Jun Luan, Ruili Liu, Liuqing Chen, Min Hu, Qiuliyang Yu","doi":"10.1111/acel.13965","DOIUrl":null,"url":null,"abstract":"<p>Nicotinamide adenine dinucleotide (NAD<sup>+</sup>) level has been associated with various age-related diseases and its pharmacological modulation emerges as a potential approach for aging intervention. But human NAD<sup>+</sup> landscape exhibits large heterogeneity. The lack of rapid, low-cost assays limits the establishment of whole-blood NAD<sup>+</sup> baseline and the development of personalized therapies, especially for those with poor responses towards conventional NAD<sup>+</sup> supplementations. Here, we developed an automated NAD<sup>+</sup> analyzer for the rapid measurement of NAD<sup>+</sup> with 5 μL of capillary blood using recombinant bioluminescent sensor protein and automated optical reader. The minimal invasiveness of the assay allowed a frequent and decentralized mapping of real-world NAD<sup>+</sup> dynamics. We showed that aerobic sport and NMN supplementation increased whole-blood NAD<sup>+</sup> and that male on average has higher NAD<sup>+</sup> than female before the age of 50. We further revealed the long-term stability of human NAD<sup>+</sup> baseline over 100 days and identified major real-world NAD<sup>+</sup>-modulating behaviors.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 10","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13965","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.13965","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Nicotinamide adenine dinucleotide (NAD+) level has been associated with various age-related diseases and its pharmacological modulation emerges as a potential approach for aging intervention. But human NAD+ landscape exhibits large heterogeneity. The lack of rapid, low-cost assays limits the establishment of whole-blood NAD+ baseline and the development of personalized therapies, especially for those with poor responses towards conventional NAD+ supplementations. Here, we developed an automated NAD+ analyzer for the rapid measurement of NAD+ with 5 μL of capillary blood using recombinant bioluminescent sensor protein and automated optical reader. The minimal invasiveness of the assay allowed a frequent and decentralized mapping of real-world NAD+ dynamics. We showed that aerobic sport and NMN supplementation increased whole-blood NAD+ and that male on average has higher NAD+ than female before the age of 50. We further revealed the long-term stability of human NAD+ baseline over 100 days and identified major real-world NAD+-modulating behaviors.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.