{"title":"A Comprehensive Study of Fatigue Crack Initiation and Growth under Very High Cycle Torsional Fatigue Loading","authors":"I. S. Nikitin, A. D. Nikitin, B. A. Stratula","doi":"10.1134/S1029959923050053","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the fatigue behavior of smooth specimens made of VT3-1 titanium alloy under fully reversed loading conditions. Mathematical modeling results are presented for the fatigue fracture of smooth specimens under high cycle torsional fatigue loading. The fatigue quasi-crack initiation and growth are calculated using a multimode two-parameter model of fatigue damage accumulation. The surface and subsurface quasi-crack initiation under torsional loading is studied. The numerical results are in good agreement with the experimental data and can be used to predict the change in crack growth mechanisms under complex multiaxial loadings such as torsion.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 5","pages":"523 - 532"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923050053","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the fatigue behavior of smooth specimens made of VT3-1 titanium alloy under fully reversed loading conditions. Mathematical modeling results are presented for the fatigue fracture of smooth specimens under high cycle torsional fatigue loading. The fatigue quasi-crack initiation and growth are calculated using a multimode two-parameter model of fatigue damage accumulation. The surface and subsurface quasi-crack initiation under torsional loading is studied. The numerical results are in good agreement with the experimental data and can be used to predict the change in crack growth mechanisms under complex multiaxial loadings such as torsion.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.