The Mutational and Transcriptional Landscapes of Speckle-Type POZ Protein (SPOP) and Androgen Receptor (AR) in a Single-Center pT3 Prostatectomy Cohort.
{"title":"The Mutational and Transcriptional Landscapes of Speckle-Type POZ Protein (SPOP) and Androgen Receptor (AR) in a Single-Center pT3 Prostatectomy Cohort.","authors":"Isil Ezgi Eryilmaz, Berna Aytac Vuruskan, Onur Kaygisiz, Gulsah Cecener, Unal Egeli, Hakan Vuruskan","doi":"10.1615/JEnvironPatholToxicolOncol.2023048095","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is a heterogeneous disease both clinically and genetically. According to The Cancer Genome Atlas (TCGA), the speckle‑type POZ protein (SPOP) mutant form is one of the significant core subtypes of PCa. However, the prognostic value of SPOP variations remains unknown. As a critical PCa driver and an SPOP-targeted protein, androgen receptor (AR) also plays a role in PCa initiation and progression. Thus, we aimed to analyze the mutational status of SPOP and AR with their transcriptional levels in a pathological stage 3 (pT3) prostatectomy cohort consisting of 89 Turkish PCa patients. Targeted sequence analysis and RT-qPCR were performed for SPOP and AR in the benign and malign prostate tissue samples. Our results introduced the two novel pathogenic SPOP variations, C203Y and S236R, in the BTB/POZ domain and a novel pathogenic variant in the ligand-binding domain of AR, R789W. Their predicted pathogenicities and effects on protein features were evaluated by web-based in silico analysis. The overall frequency of SPOP and AR variations for pT3 patients in our population was 3.4% (3/89) and 4.5% (4/89), respectively. The mutational results represented a possible subgroup characterized by carrying the novel variants in SPOP and AR in pT3 PCa patients. In addition to the significant clinicopathological parameters, the mutational results provide a better understanding of the molecular structure of pathologically advanced PCa in the SPOP and AR aspects.</p>","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JEnvironPatholToxicolOncol.2023048095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer (PCa) is a heterogeneous disease both clinically and genetically. According to The Cancer Genome Atlas (TCGA), the speckle‑type POZ protein (SPOP) mutant form is one of the significant core subtypes of PCa. However, the prognostic value of SPOP variations remains unknown. As a critical PCa driver and an SPOP-targeted protein, androgen receptor (AR) also plays a role in PCa initiation and progression. Thus, we aimed to analyze the mutational status of SPOP and AR with their transcriptional levels in a pathological stage 3 (pT3) prostatectomy cohort consisting of 89 Turkish PCa patients. Targeted sequence analysis and RT-qPCR were performed for SPOP and AR in the benign and malign prostate tissue samples. Our results introduced the two novel pathogenic SPOP variations, C203Y and S236R, in the BTB/POZ domain and a novel pathogenic variant in the ligand-binding domain of AR, R789W. Their predicted pathogenicities and effects on protein features were evaluated by web-based in silico analysis. The overall frequency of SPOP and AR variations for pT3 patients in our population was 3.4% (3/89) and 4.5% (4/89), respectively. The mutational results represented a possible subgroup characterized by carrying the novel variants in SPOP and AR in pT3 PCa patients. In addition to the significant clinicopathological parameters, the mutational results provide a better understanding of the molecular structure of pathologically advanced PCa in the SPOP and AR aspects.