{"title":"Comprehensive Investigation of m6A Regulators for Prognosis in Head and Neck Squamous Cell Carcinoma.","authors":"Jingning Cheng, Yong Lyu, Ziyan Cheng","doi":"10.1615/JEnvironPatholToxicolOncol.2023047701","DOIUrl":null,"url":null,"abstract":"<p><p>The early detection of head and neck squamous cell carcinoma (HNSCC) has an important impact on the clinical prognosis. N6-methyladenosine (m6A) is involved in the post-transcriptional regulation of tumorigenesis and development. In this study, the prognosis and biological functions of m6A regulator targets in HNSCC were explored. RNA-Seq expression data and clinical information from TCGA-HNSCC and GSE23036 datasets were collected. The mRNA levels of IGF2BP2 and IGF2BP3 in tumor tissues were significantly up-regulated. Differential expression and functional enrichment analysis of potential targets for IGF2BP2 and IGF2BP3 obtained from the m6A2Target database showed that they were significantly enriched in cell cycle-related pathways. The Cox regression analysis was performed to establish a three-mRNA signature including PLAU, LPIN1 and AURKA. The prognostic effect was verified in the external dataset GSE41613. Further studies revealed that the three-mRNA signature was significantly associated with survival in the clinical subgroup. The ROC curve, Harrell consistency index and decision curve comparison used to compare the predictive effect of the three-mRNA signature and the other signatures in previous studies showed that the three-mRNA signature had better predictive effect on the prognosis of HNSCC patients. The three-mRNA signature expression were verified in HNSCC cell lines with qRT-PCR and Western blot. Sequence analysis showed that m6A-modification sites existed on PLAU, LPIN1 and AURKA genes. In conclusion, the three-mRNA signature has been proved to be useful on evaluating the prognosis and contributing to the personalized treatment of HNSCC, and IGB2BP2/3 were related to the cell cycle in HNSCC.</p>","PeriodicalId":94332,"journal":{"name":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JEnvironPatholToxicolOncol.2023047701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The early detection of head and neck squamous cell carcinoma (HNSCC) has an important impact on the clinical prognosis. N6-methyladenosine (m6A) is involved in the post-transcriptional regulation of tumorigenesis and development. In this study, the prognosis and biological functions of m6A regulator targets in HNSCC were explored. RNA-Seq expression data and clinical information from TCGA-HNSCC and GSE23036 datasets were collected. The mRNA levels of IGF2BP2 and IGF2BP3 in tumor tissues were significantly up-regulated. Differential expression and functional enrichment analysis of potential targets for IGF2BP2 and IGF2BP3 obtained from the m6A2Target database showed that they were significantly enriched in cell cycle-related pathways. The Cox regression analysis was performed to establish a three-mRNA signature including PLAU, LPIN1 and AURKA. The prognostic effect was verified in the external dataset GSE41613. Further studies revealed that the three-mRNA signature was significantly associated with survival in the clinical subgroup. The ROC curve, Harrell consistency index and decision curve comparison used to compare the predictive effect of the three-mRNA signature and the other signatures in previous studies showed that the three-mRNA signature had better predictive effect on the prognosis of HNSCC patients. The three-mRNA signature expression were verified in HNSCC cell lines with qRT-PCR and Western blot. Sequence analysis showed that m6A-modification sites existed on PLAU, LPIN1 and AURKA genes. In conclusion, the three-mRNA signature has been proved to be useful on evaluating the prognosis and contributing to the personalized treatment of HNSCC, and IGB2BP2/3 were related to the cell cycle in HNSCC.