Boundary layer transition modeling on leading edge inflatable kite airfoils.

Wind energy (Chichester, England) Pub Date : 2019-07-01 Epub Date: 2019-03-26 DOI:10.1002/we.2329
Mikko Folkersma, Roland Schmehl, Axelle Viré
{"title":"Boundary layer transition modeling on leading edge inflatable kite airfoils.","authors":"Mikko Folkersma,&nbsp;Roland Schmehl,&nbsp;Axelle Viré","doi":"10.1002/we.2329","DOIUrl":null,"url":null,"abstract":"<p><p>We present a computational fluid dynamic analysis of boundary layer transition on leading edge inflatable kite airfoils used for airborne wind energy generation. Because of the operation in pumping cycles, the airfoil is generally subject to a wide range of Reynolds numbers. The analysis is based on the combination of the shear stress transport turbulence model with the <math><mi>γ</mi> <mo>-</mo> <mover><mi>R</mi> <mo>˜</mo></mover> <msub><mi>e</mi> <mrow><mi>θ</mi> <mi>t</mi></mrow> </msub> </math> transition model, which can handle the laminar boundary layer and its transition to turbulence. The implementation of both models in OpenFOAM is described. We show a validation of the method for a sailwing (ie, a wing with a membrane) airfoil and an application to a leading edge inflatable kite airfoil. For the sailwing airfoil, the results computed with transition model agree well with the existing low Reynolds number experiment over the whole range of angles of attack. For the leading edge inflatable kite airfoil, the transition modeling has both favorable and unfavorable effects on the aerodynamics. On the one hand, the aerodynamics suffer from the laminar separation. But, on the other hand, the laminar boundary layer thickens slower than the turbulent counterpart, which, in combination with transition, delays the separation. The results also indicate that the aerodynamics of the kite airfoil could be improved by delaying the boundary layer transition during the traction phase and tripping the transition in the retraction phase.</p>","PeriodicalId":92859,"journal":{"name":"Wind energy (Chichester, England)","volume":"22 7","pages":"908-921"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/we.2329","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind energy (Chichester, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/we.2329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present a computational fluid dynamic analysis of boundary layer transition on leading edge inflatable kite airfoils used for airborne wind energy generation. Because of the operation in pumping cycles, the airfoil is generally subject to a wide range of Reynolds numbers. The analysis is based on the combination of the shear stress transport turbulence model with the γ - R ˜ e θ t transition model, which can handle the laminar boundary layer and its transition to turbulence. The implementation of both models in OpenFOAM is described. We show a validation of the method for a sailwing (ie, a wing with a membrane) airfoil and an application to a leading edge inflatable kite airfoil. For the sailwing airfoil, the results computed with transition model agree well with the existing low Reynolds number experiment over the whole range of angles of attack. For the leading edge inflatable kite airfoil, the transition modeling has both favorable and unfavorable effects on the aerodynamics. On the one hand, the aerodynamics suffer from the laminar separation. But, on the other hand, the laminar boundary layer thickens slower than the turbulent counterpart, which, in combination with transition, delays the separation. The results also indicate that the aerodynamics of the kite airfoil could be improved by delaying the boundary layer transition during the traction phase and tripping the transition in the retraction phase.

Abstract Image

Abstract Image

Abstract Image

前缘充气风筝翼型的边界层过渡模型。
我们对用于航空风能发电的前缘充气风筝翼型的边界层过渡进行了计算流体动力学分析。由于在泵送循环中的操作,翼型通常受到大范围雷诺数的影响。该分析基于剪切应力传输湍流模型与γ-R~eθt过渡模型的结合,该模型可以处理层流边界层及其向湍流的过渡。描述了这两种模型在OpenFOAM中的实现。我们展示了该方法在帆翼(即带膜的机翼)机翼上的验证,以及在前缘充气风筝机翼上的应用。对于机翼,在整个攻角范围内,用过渡模型计算的结果与现有的低雷诺数实验结果吻合良好。对于前缘充气风筝翼型,过渡建模对其空气动力学既有有利的影响,也有不利的影响。一方面,空气动力学受到层流分离的影响。但是,另一方面,层流边界层的增厚速度慢于湍流边界层,这与过渡相结合,延迟了分离。结果还表明,通过在牵引阶段延迟边界层过渡和在收回阶段中断过渡,可以改善风筝翼型的空气动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信