{"title":"Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3","authors":"Shehab E. Ali","doi":"10.1007/s10832-021-00276-1","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocrystalline BiFeO<sub>3</sub> was synthesized utilizing two distinct techniques: auto-combustion and ceramic. A unique auto-combustion process employing glycine as a fuel has been used to synthesize single-phase BiFeO<sub>3</sub> nanoparticles. Well mixed metal nitrates combust, producing BiFeO<sub>3</sub> nanoparticles, which crystallize in a rhombohedral perovskite structure. The average particle size of 16 nm was estimated using Rietveld refinement of the X-ray diffraction data. The X-ray diffraction data for the solid-state prepared sample shows the formation of BiFeO<sub>3</sub> with the same rhombohedral perovskite structure with an average particle size of 101 nm with additional secondary phases corresponding to Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>/Bi<sub>2</sub>O<sub>3</sub> and Bi<sub>25</sub>FeO<sub>39</sub>. By increasing the sintering time Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>/Bi<sub>2</sub>O<sub>3</sub> phase disappeared after 3 h of heating and reappeared again after 5 h of sintering. The changing of sintering time was not able to reduce the Bi<sub>25</sub>FeO<sub>39</sub> formation. The TEM estimated average particle size confirms the XRD analysis. M(H) hysteresis loop shows a G-type magnetic structure. Due to the small particle size, the periodicity of canted spins was broken, and the magnetization of the auto-combustion prepared sample is approximately eight times greater than the ceramic prepared one. The importance of pure phase BiFeO<sub>3</sub> came from its potential applications in sensors, data storage, spintronics devices, and reports of greatly enhanced ferroelectricity in epitaxially strained thin films.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"48 2","pages":"95 - 101"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-021-00276-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 10
Abstract
Nanocrystalline BiFeO3 was synthesized utilizing two distinct techniques: auto-combustion and ceramic. A unique auto-combustion process employing glycine as a fuel has been used to synthesize single-phase BiFeO3 nanoparticles. Well mixed metal nitrates combust, producing BiFeO3 nanoparticles, which crystallize in a rhombohedral perovskite structure. The average particle size of 16 nm was estimated using Rietveld refinement of the X-ray diffraction data. The X-ray diffraction data for the solid-state prepared sample shows the formation of BiFeO3 with the same rhombohedral perovskite structure with an average particle size of 101 nm with additional secondary phases corresponding to Bi2Fe4O9/Bi2O3 and Bi25FeO39. By increasing the sintering time Bi2Fe4O9/Bi2O3 phase disappeared after 3 h of heating and reappeared again after 5 h of sintering. The changing of sintering time was not able to reduce the Bi25FeO39 formation. The TEM estimated average particle size confirms the XRD analysis. M(H) hysteresis loop shows a G-type magnetic structure. Due to the small particle size, the periodicity of canted spins was broken, and the magnetization of the auto-combustion prepared sample is approximately eight times greater than the ceramic prepared one. The importance of pure phase BiFeO3 came from its potential applications in sensors, data storage, spintronics devices, and reports of greatly enhanced ferroelectricity in epitaxially strained thin films.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.