Heijo Scharff, Hun-Yang Soon, Sam Rwabwehare Taremwa, Dennis Zegers, Bob Dick, Thiago Villas Bôas Zanon, Jonathan Shamrock
{"title":"The impact of landfill management approaches on methane emissions.","authors":"Heijo Scharff, Hun-Yang Soon, Sam Rwabwehare Taremwa, Dennis Zegers, Bob Dick, Thiago Villas Bôas Zanon, Jonathan Shamrock","doi":"10.1177/0734242X231200742","DOIUrl":null,"url":null,"abstract":"<p><p>This article reports on how management approaches influence methane emissions from landfills. The project team created various landfill operational scenarios for different regions of the planet with respect to waste composition, organic waste reduction and landfill gas recovery timing. These scenarios were modelled by applying a basic gas generation model according to the United Nations Intergovernmental Panel on Climate Change (IPCC) recommendations. In general, the IPCC's recommended modelling parameters and default values were used. Based on the modelling undertaken, two options stand out as being the most effective methane mitigation measures in a wide range of conditions throughout the world: (a) early gas recovery and (b) reduction of the amount of biodegradable organic waste accepted in a landfill. It is noted that reduction of organic input to any given landfill can take many years to realize. Moreover, suitable alternative processing or disposal options for the organic waste can be unaffordable for a significant percentage of the planet's population. Although effective, organic waste reduction cannot therefore be the only landfill methane mitigation measure. Early landfill gas recovery can be very effective by applying basic technologies that can be deployed relatively quickly, and at modest cost. Policymakers and regulators from around the globe can significantly reduce adverse environmental impacts from landfill gas emissions by stimulating both the early capture and flaring and/or energy recovery of landfill gas and programmes to reduce the inflow of organic waste into landfills.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X231200742","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article reports on how management approaches influence methane emissions from landfills. The project team created various landfill operational scenarios for different regions of the planet with respect to waste composition, organic waste reduction and landfill gas recovery timing. These scenarios were modelled by applying a basic gas generation model according to the United Nations Intergovernmental Panel on Climate Change (IPCC) recommendations. In general, the IPCC's recommended modelling parameters and default values were used. Based on the modelling undertaken, two options stand out as being the most effective methane mitigation measures in a wide range of conditions throughout the world: (a) early gas recovery and (b) reduction of the amount of biodegradable organic waste accepted in a landfill. It is noted that reduction of organic input to any given landfill can take many years to realize. Moreover, suitable alternative processing or disposal options for the organic waste can be unaffordable for a significant percentage of the planet's population. Although effective, organic waste reduction cannot therefore be the only landfill methane mitigation measure. Early landfill gas recovery can be very effective by applying basic technologies that can be deployed relatively quickly, and at modest cost. Policymakers and regulators from around the globe can significantly reduce adverse environmental impacts from landfill gas emissions by stimulating both the early capture and flaring and/or energy recovery of landfill gas and programmes to reduce the inflow of organic waste into landfills.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.