{"title":"Integrated multi-omics analysis identifies epigenetic alteration related to neurodegeneration development in post-traumatic stress disorder patients.","authors":"Ayeh Bolouki, Moosa Rahimi, Negar Azarpira, Fatemeh Baghban","doi":"10.1097/YPG.0000000000000340","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Post-traumatic stress disorder (PTSD), is associated with an elevated risk of neurodegenerative disorders, but the molecular mechanism was not wholly identified. Aberrant methylation status and miRNA expression pattern have been identified to be associated with PTSD, but their complex regulatory networks remain largely unexplored.</p><p><strong>Methods: </strong>The purpose of this study was to identify the key genes/pathways related to neurodegenerative disorder development in PTSD by evaluating epigenetic regulatory signature (DNA methylation and miRNA) using an integrative bioinformatic analysis. We integrated DNA expression array data with miRNA and DNA methylation array data - obtained from the GEO database- to evaluate the epigenetic regulatory mechanisms.</p><p><strong>Results: </strong>Our results indicated that target genes of dysregulated miRNAs were significantly related to several neurodegenerative diseases. Several dysregulated genes in the neurodegeneration pathways interacted with some members of the miR-17 and miR-15/107 families. Our analysis indicated that APP/CaN/NFATs signaling pathway was dysregulated in the peripheral blood samples of PTSD. Besides, the DNMT3a and KMT2D genes, as the encoding DNA and histone methyltransferase enzymes, were upregulated, and DNA methylation and miRNA regulators were proposed as critical molecular mechanisms. Our study found dysregulation of circadian rhythm as the CLOCK gene was upregulated and hypomethylated at TSS1500 CpGs S_shores and was also a target of several dysregulated miRNAs.</p><p><strong>Conclusion: </strong>In conclusion, we found evidence of a negative feedback loop between stress oxidative, circadian rhythm dysregulation, miR-17 and miR-15/107 families, some essential genes involved in neuronal and brain cell health, and KMT2D/DNMT3a in the peripheral blood samples of PTSD.</p>","PeriodicalId":20734,"journal":{"name":"Psychiatric Genetics","volume":"33 5","pages":"167-181"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatric Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/YPG.0000000000000340","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Post-traumatic stress disorder (PTSD), is associated with an elevated risk of neurodegenerative disorders, but the molecular mechanism was not wholly identified. Aberrant methylation status and miRNA expression pattern have been identified to be associated with PTSD, but their complex regulatory networks remain largely unexplored.
Methods: The purpose of this study was to identify the key genes/pathways related to neurodegenerative disorder development in PTSD by evaluating epigenetic regulatory signature (DNA methylation and miRNA) using an integrative bioinformatic analysis. We integrated DNA expression array data with miRNA and DNA methylation array data - obtained from the GEO database- to evaluate the epigenetic regulatory mechanisms.
Results: Our results indicated that target genes of dysregulated miRNAs were significantly related to several neurodegenerative diseases. Several dysregulated genes in the neurodegeneration pathways interacted with some members of the miR-17 and miR-15/107 families. Our analysis indicated that APP/CaN/NFATs signaling pathway was dysregulated in the peripheral blood samples of PTSD. Besides, the DNMT3a and KMT2D genes, as the encoding DNA and histone methyltransferase enzymes, were upregulated, and DNA methylation and miRNA regulators were proposed as critical molecular mechanisms. Our study found dysregulation of circadian rhythm as the CLOCK gene was upregulated and hypomethylated at TSS1500 CpGs S_shores and was also a target of several dysregulated miRNAs.
Conclusion: In conclusion, we found evidence of a negative feedback loop between stress oxidative, circadian rhythm dysregulation, miR-17 and miR-15/107 families, some essential genes involved in neuronal and brain cell health, and KMT2D/DNMT3a in the peripheral blood samples of PTSD.
期刊介绍:
The journal aims to publish papers which bring together clinical observations, psychological and behavioural abnormalities and genetic data. All papers are fully refereed.
Psychiatric Genetics is also a forum for reporting new approaches to genetic research in psychiatry and neurology utilizing novel techniques or methodologies. Psychiatric Genetics publishes original Research Reports dealing with inherited factors involved in psychiatric and neurological disorders. This encompasses gene localization and chromosome markers, changes in neuronal gene expression related to psychiatric disease, linkage genetics analyses, family, twin and adoption studies, and genetically based animal models of neuropsychiatric disease. The journal covers areas such as molecular neurobiology and molecular genetics relevant to mental illness.
Reviews of the literature and Commentaries in areas of current interest will be considered for publication. Reviews and Commentaries in areas outside psychiatric genetics, but of interest and importance to Psychiatric Genetics, will also be considered.
Psychiatric Genetics also publishes Book Reviews, Brief Reports and Conference Reports.