Zeng Meng, Gang Yang, Qin Wang, Xuan Wang, Quhao Li
{"title":"Reliability-based topology optimization of vibrating structures with frequency constraints","authors":"Zeng Meng, Gang Yang, Qin Wang, Xuan Wang, Quhao Li","doi":"10.1007/s10999-022-09637-2","DOIUrl":null,"url":null,"abstract":"<div><p>There are many inevitable uncertain parameters in engineering systems, and the ignorance of these random factors results in a remarkable reduction in the dynamical system’s performance for the eigenvalue topology optimization problem. To address the problem, a reliability-based topology optimization (RBTO) model for lightweight design with frequency constraints is established, which aims to account the probabilistic behavior incurred by material properties and geometric dimensions. Then, the single loop approach is used to tackle the RBTO problem. The sensitivities of eigenvalues with respect to the design and random variables are also deduced, in which the simple and multiple eigenfrequencies are simultaneously considered. Moreover, the threshold projection approach is used to eliminate the checkerboard phenomena and grey elements for the eigenvalue topology optimization problem. Three examples are discussed to exhibit the validity of the proposed RBTO methodology.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 2","pages":"467 - 481"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-022-09637-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
There are many inevitable uncertain parameters in engineering systems, and the ignorance of these random factors results in a remarkable reduction in the dynamical system’s performance for the eigenvalue topology optimization problem. To address the problem, a reliability-based topology optimization (RBTO) model for lightweight design with frequency constraints is established, which aims to account the probabilistic behavior incurred by material properties and geometric dimensions. Then, the single loop approach is used to tackle the RBTO problem. The sensitivities of eigenvalues with respect to the design and random variables are also deduced, in which the simple and multiple eigenfrequencies are simultaneously considered. Moreover, the threshold projection approach is used to eliminate the checkerboard phenomena and grey elements for the eigenvalue topology optimization problem. Three examples are discussed to exhibit the validity of the proposed RBTO methodology.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.