Ada N Nordeidet, Marie Klevjer, Ulrik Wisløff, Mette Langaas, Anja Bye
{"title":"Exploring shared genetics between maximal oxygen uptake and disease: the HUNT study.","authors":"Ada N Nordeidet, Marie Klevjer, Ulrik Wisløff, Mette Langaas, Anja Bye","doi":"10.1152/physiolgenomics.00026.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Low cardiorespiratory fitness, measured as maximal oxygen uptake (V̇o<sub>2max</sub>), is associated with all-cause mortality and disease-specific morbidity and mortality and is estimated to have a large genetic component (∼60%). However, the underlying mechanisms explaining the associations are not known, and no association study has assessed shared genetics between directly measured V̇o<sub>2max</sub> and disease. We believe that identifying the mechanisms explaining how low V̇o<sub>2max</sub> is related to increased disease risk can contribute to prevention and therapy. We used a phenome-wide association study approach to test for shared genetics. A total of 64,479 participants from the Trøndelag Health Study (HUNT) were included. Genetic variants previously linked to V̇o<sub>2max</sub> were tested for association with diseases related to the cardiovascular system, diabetes, dementia, mental disorders, and cancer as well as clinical measurements and biomarkers from HUNT. In the total population, three single-nucleotide polymorphisms (SNPs) in and near the follicle-stimulating hormone receptor gene (<i>FSHR</i>) were found to be associated (false discovery rate < 0.05) with serum creatinine levels and one intronic SNP in the Rap-associating DIL domain gene (<i>RADIL</i>) with diabetes type 1 with neurological manifestations. In males, four intronic SNPs in the PBX/knotted homeobox 2 gene (<i>PKNOX2</i>) were found to be associated with endocarditis. None of the association tests in the female population reached overall statistical significance; the associations with the lowest <i>P</i> values included other cardiac conduction disorders, subdural hemorrhage, and myocarditis. The results might suggest shared genetics between V̇o<sub>2max</sub> and disease. However, further effort should be put into investigating the potential shared genetics between inborn V̇o<sub>2max</sub> and disease in larger cohorts to increase statistical power.<b>NEW & NOTEWORTHY</b> To our knowledge, this is the first genetic association study exploring how genes linked to cardiorespiratory fitness (CRF) relate to disease risk. By investigating shared genetics, we found indications that genetic variants linked to directly measured CRF also affect the level of blood creatinine, risk of diabetes, and endocarditis. Less certain findings showed that genetic variants of high CRF might cause lower body mass index, healthier HDL cholesterol, and lower resting heart rate.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00026.2023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Low cardiorespiratory fitness, measured as maximal oxygen uptake (V̇o2max), is associated with all-cause mortality and disease-specific morbidity and mortality and is estimated to have a large genetic component (∼60%). However, the underlying mechanisms explaining the associations are not known, and no association study has assessed shared genetics between directly measured V̇o2max and disease. We believe that identifying the mechanisms explaining how low V̇o2max is related to increased disease risk can contribute to prevention and therapy. We used a phenome-wide association study approach to test for shared genetics. A total of 64,479 participants from the Trøndelag Health Study (HUNT) were included. Genetic variants previously linked to V̇o2max were tested for association with diseases related to the cardiovascular system, diabetes, dementia, mental disorders, and cancer as well as clinical measurements and biomarkers from HUNT. In the total population, three single-nucleotide polymorphisms (SNPs) in and near the follicle-stimulating hormone receptor gene (FSHR) were found to be associated (false discovery rate < 0.05) with serum creatinine levels and one intronic SNP in the Rap-associating DIL domain gene (RADIL) with diabetes type 1 with neurological manifestations. In males, four intronic SNPs in the PBX/knotted homeobox 2 gene (PKNOX2) were found to be associated with endocarditis. None of the association tests in the female population reached overall statistical significance; the associations with the lowest P values included other cardiac conduction disorders, subdural hemorrhage, and myocarditis. The results might suggest shared genetics between V̇o2max and disease. However, further effort should be put into investigating the potential shared genetics between inborn V̇o2max and disease in larger cohorts to increase statistical power.NEW & NOTEWORTHY To our knowledge, this is the first genetic association study exploring how genes linked to cardiorespiratory fitness (CRF) relate to disease risk. By investigating shared genetics, we found indications that genetic variants linked to directly measured CRF also affect the level of blood creatinine, risk of diabetes, and endocarditis. Less certain findings showed that genetic variants of high CRF might cause lower body mass index, healthier HDL cholesterol, and lower resting heart rate.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.