Anders Granholm, Theis Lange, Michael O Harhay, Aksel Karl Georg Jensen, Anders Perner, Morten Hylander Møller, Benjamin Skov Kaas-Hansen
{"title":"Effects of duration of follow-up and lag in data collection on the performance of adaptive clinical trials.","authors":"Anders Granholm, Theis Lange, Michael O Harhay, Aksel Karl Georg Jensen, Anders Perner, Morten Hylander Møller, Benjamin Skov Kaas-Hansen","doi":"10.1002/pst.2342","DOIUrl":null,"url":null,"abstract":"<p><p>Different combined outcome-data lags (follow-up durations plus data-collection lags) may affect the performance of adaptive clinical trial designs. We assessed the influence of different outcome-data lags (0-105 days) on the performance of various multi-stage, adaptive trial designs (2/4 arms, with/without a common control, fixed/response-adaptive randomisation) with undesirable binary outcomes according to different inclusion rates (3.33/6.67/10 patients/day) under scenarios with no, small, and large differences. Simulations were conducted under a Bayesian framework, with constant stopping thresholds for superiority/inferiority calibrated to keep type-1 error rates at approximately 5%. We assessed multiple performance metrics, including mean sample sizes, event counts/probabilities, probabilities of conclusiveness, root mean squared errors (RMSEs) of the estimated effect in the selected arms, and RMSEs between the analyses at the time of stopping and the final analyses including data from all randomised patients. Performance metrics generally deteriorated when the proportions of randomised patients with available data were smaller due to longer outcome-data lags or faster inclusion, that is, mean sample sizes, event counts/probabilities, and RMSEs were larger, while the probabilities of conclusiveness were lower. Performance metric impairments with outcome-data lags ≤45 days were relatively smaller compared to those occurring with ≥60 days of lag. For most metrics, the effects of different outcome-data lags and lower proportions of randomised patients with available data were larger than those of different design choices, for example, the use of fixed versus response-adaptive randomisation. Increased outcome-data lag substantially affected the performance of adaptive trial designs. Trialists should consider the effects of outcome-data lags when planning adaptive trials.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"138-150"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2342","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Different combined outcome-data lags (follow-up durations plus data-collection lags) may affect the performance of adaptive clinical trial designs. We assessed the influence of different outcome-data lags (0-105 days) on the performance of various multi-stage, adaptive trial designs (2/4 arms, with/without a common control, fixed/response-adaptive randomisation) with undesirable binary outcomes according to different inclusion rates (3.33/6.67/10 patients/day) under scenarios with no, small, and large differences. Simulations were conducted under a Bayesian framework, with constant stopping thresholds for superiority/inferiority calibrated to keep type-1 error rates at approximately 5%. We assessed multiple performance metrics, including mean sample sizes, event counts/probabilities, probabilities of conclusiveness, root mean squared errors (RMSEs) of the estimated effect in the selected arms, and RMSEs between the analyses at the time of stopping and the final analyses including data from all randomised patients. Performance metrics generally deteriorated when the proportions of randomised patients with available data were smaller due to longer outcome-data lags or faster inclusion, that is, mean sample sizes, event counts/probabilities, and RMSEs were larger, while the probabilities of conclusiveness were lower. Performance metric impairments with outcome-data lags ≤45 days were relatively smaller compared to those occurring with ≥60 days of lag. For most metrics, the effects of different outcome-data lags and lower proportions of randomised patients with available data were larger than those of different design choices, for example, the use of fixed versus response-adaptive randomisation. Increased outcome-data lag substantially affected the performance of adaptive trial designs. Trialists should consider the effects of outcome-data lags when planning adaptive trials.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.