Synchronization of Time-Delay Coupled Neural Networks With Stabilizing Delayed Impulsive Control.

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lingzhong Zhang, Jianquan Lu, Fengyi Liu, Jungang Lou
{"title":"Synchronization of Time-Delay Coupled Neural Networks With Stabilizing Delayed Impulsive Control.","authors":"Lingzhong Zhang, Jianquan Lu, Fengyi Liu, Jungang Lou","doi":"10.1109/TNNLS.2023.3320651","DOIUrl":null,"url":null,"abstract":"<p><p>This brief studies the distributed synchronization of time-delay coupled neural networks (NNs) with impulsive pinning control involving stabilizing delays. A novel differential inequality is proposed, where the state's past information at impulsive time is effectively extracted and used to handle the synchronization of coupled NNs. Based on this inequality, the restriction that the size of impulsive delay is always limited by the system delay is removed, and the upper bound on the impulsive delay is relaxed, which is improved the existing related results. By using the methods of average impulsive interval (AII) and impulsive delay, some relaxed criteria for distributed synchronization of time-delay coupled NNs are obtained. The proposed synchronization conditions do not impose on the upper bound of two consecutive impulsive signals, and the lower bound is more flexible. Moreover, our results reveal that the impulsive delays may contribute to the synchronization of time-delay systems. Finally, typical networks are presented to illustrate the advantage of our delayed impulsive control method.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3320651","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This brief studies the distributed synchronization of time-delay coupled neural networks (NNs) with impulsive pinning control involving stabilizing delays. A novel differential inequality is proposed, where the state's past information at impulsive time is effectively extracted and used to handle the synchronization of coupled NNs. Based on this inequality, the restriction that the size of impulsive delay is always limited by the system delay is removed, and the upper bound on the impulsive delay is relaxed, which is improved the existing related results. By using the methods of average impulsive interval (AII) and impulsive delay, some relaxed criteria for distributed synchronization of time-delay coupled NNs are obtained. The proposed synchronization conditions do not impose on the upper bound of two consecutive impulsive signals, and the lower bound is more flexible. Moreover, our results reveal that the impulsive delays may contribute to the synchronization of time-delay systems. Finally, typical networks are presented to illustrate the advantage of our delayed impulsive control method.

具有稳定延迟脉冲控制的时滞耦合神经网络的同步。
本文研究了具有稳定时滞的脉冲钉扎控制的时滞耦合神经网络的分布式同步问题。提出了一种新的微分不等式,其中有效地提取了状态在脉冲时间的过去信息,并用于处理耦合神经网络的同步。基于该不等式,消除了脉冲延迟大小总是受系统延迟限制的限制,放宽了脉冲延迟的上界,改进了现有的相关结果。利用平均脉冲间隔(AII)和脉冲延迟的方法,得到了时滞耦合神经网络分布式同步的一些松弛准则。所提出的同步条件不影响两个连续脉冲信号的上界,并且下界更灵活。此外,我们的结果表明,脉冲时滞可能有助于时滞系统的同步。最后,给出了典型的网络来说明我们的延迟脉冲控制方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信