AMS-Net: Modeling Adaptive Multi-Granularity Spatio-Temporal Cues for Video Action Recognition.

IF 10.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qilong Wang, Qiyao Hu, Zilin Gao, Peihua Li, Qinghua Hu
{"title":"AMS-Net: Modeling Adaptive Multi-Granularity Spatio-Temporal Cues for Video Action Recognition.","authors":"Qilong Wang, Qiyao Hu, Zilin Gao, Peihua Li, Qinghua Hu","doi":"10.1109/TNNLS.2023.3321141","DOIUrl":null,"url":null,"abstract":"<p><p>Effective spatio-temporal modeling as a core of video representation learning is challenged by complex scale variations in spatio-temporal cues in videos, especially different visual tempos of actions and varying spatial sizes of moving objects. Most of the existing works handle complex spatio-temporal scale variations based on input-level or feature-level pyramid mechanisms, which, however, rely on expensive multistream architectures or explore multiscale spatio-temporal features in a fixed manner. To effectively capture complex scale dynamics of spatio-temporal cues in an efficient way, this article proposes a single-stream architecture (SS-Arch.) with single-input namely, adaptive multi-granularity spatio-temporal network (AMS-Net) to model adaptive multi-granularity (Multi-Gran.) Spatio-temporal cues for video action recognition. To this end, our AMS-Net proposes two core components, namely, competitive progressive temporal modeling (CPTM) block and collaborative spatio-temporal pyramid (CSTP) module. They, respectively, capture fine-grained temporal cues and fuse coarse-level spatio-temporal features in an adaptive manner. It admits that AMS-Net can handle subtle variations in visual tempos and fair-sized spatio-temporal dynamics in a unified architecture. Note that our AMS-Net can be flexibly instantiated based on existing deep convolutional neural networks (CNNs) with the proposed CPTM block and CSTP module. The experiments are conducted on eight video benchmarks, and the results show our AMS-Net establishes state-of-the-art (SOTA) performance on fine-grained action recognition (i.e., Diving48 and FineGym), while performing very competitively on widely used Something-Something and Kinetics.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2023.3321141","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Effective spatio-temporal modeling as a core of video representation learning is challenged by complex scale variations in spatio-temporal cues in videos, especially different visual tempos of actions and varying spatial sizes of moving objects. Most of the existing works handle complex spatio-temporal scale variations based on input-level or feature-level pyramid mechanisms, which, however, rely on expensive multistream architectures or explore multiscale spatio-temporal features in a fixed manner. To effectively capture complex scale dynamics of spatio-temporal cues in an efficient way, this article proposes a single-stream architecture (SS-Arch.) with single-input namely, adaptive multi-granularity spatio-temporal network (AMS-Net) to model adaptive multi-granularity (Multi-Gran.) Spatio-temporal cues for video action recognition. To this end, our AMS-Net proposes two core components, namely, competitive progressive temporal modeling (CPTM) block and collaborative spatio-temporal pyramid (CSTP) module. They, respectively, capture fine-grained temporal cues and fuse coarse-level spatio-temporal features in an adaptive manner. It admits that AMS-Net can handle subtle variations in visual tempos and fair-sized spatio-temporal dynamics in a unified architecture. Note that our AMS-Net can be flexibly instantiated based on existing deep convolutional neural networks (CNNs) with the proposed CPTM block and CSTP module. The experiments are conducted on eight video benchmarks, and the results show our AMS-Net establishes state-of-the-art (SOTA) performance on fine-grained action recognition (i.e., Diving48 and FineGym), while performing very competitively on widely used Something-Something and Kinetics.

AMS-Net:视频动作识别的自适应多粒度时空线索建模。
有效的时空建模作为视频表示学习的核心,受到视频中时空线索复杂尺度变化的挑战,尤其是动作的不同视觉节奏和移动对象的不同空间大小。大多数现有工作基于输入级或特征级金字塔机制来处理复杂的时空尺度变化,然而,这些机制依赖于昂贵的多流架构或以固定的方式探索多尺度时空特征。为了以有效的方式有效地捕捉时空线索的复杂尺度动态,本文提出了一种具有单输入的单流架构(SS Arch.),即自适应多粒度时空网络(AMS Net),以对用于视频动作识别的自适应多粒度(multi-Gran.)时空线索进行建模。为此,我们的AMS Net提出了两个核心组件,即竞争渐进时间建模(CPTM)块和协作时空金字塔(CSTP)模块。它们分别捕获细粒度的时间线索,并以自适应的方式融合粗略级别的时空特征。它承认AMS Net可以在统一的架构中处理视觉节奏和合理大小的时空动态的细微变化。注意,我们的AMS-Net可以基于现有的深度卷积神经网络(CNNs),通过所提出的CPTM块和CSTP模块进行灵活的实例化。实验在八个视频基准上进行,结果表明,我们的AMS Net在细粒度动作识别(即Diving48和FineGym)方面建立了最先进的(SOTA)性能,同时在广泛使用的SomethingSomething和Kinetics方面表现非常有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信