Sophie McKenna , Frances Aylward , Xeni Miliara , Rikin J. Lau , Camilla Berg Huemer , Sean P. Giblin , Kristin K. Huse , Mingyang Liang , Lucy Reeves , Max Pearson , Yingqi Xu , Sarah L. Rouse , James E. Pease , Shiranee Sriskandan , Todd F. Kagawa , Jakki Cooney , Stephen Matthews
{"title":"The protease associated (PA) domain in ScpA from Streptococcus pyogenes plays a role in substrate recruitment","authors":"Sophie McKenna , Frances Aylward , Xeni Miliara , Rikin J. Lau , Camilla Berg Huemer , Sean P. Giblin , Kristin K. Huse , Mingyang Liang , Lucy Reeves , Max Pearson , Yingqi Xu , Sarah L. Rouse , James E. Pease , Shiranee Sriskandan , Todd F. Kagawa , Jakki Cooney , Stephen Matthews","doi":"10.1016/j.bbapap.2023.140946","DOIUrl":null,"url":null,"abstract":"<div><p>Annually, over 18 million disease cases and half a million deaths worldwide are estimated to be caused by Group A Streptococcus. ScpA (or C5a peptidase) is a well characterised member of the cell enveleope protease family, which possess a S8 subtilisin-like catalytic domain and a shared multi-domain architecture. ScpA cleaves complement factors C5a and C3a, impairing the function of these critical anaphylatoxins and disrupts complement-mediated innate immunity. Although the high resolution structure of ScpA is known, the details of how it recognises its substrate are only just emerging. Previous studies have identified a distant exosite on the 2nd fibronectin domain that plays an important role in recruitment via an interaction with the substrate core. Here, using a combination of solution NMR spectroscopy, mutagenesis with functional assays and computational approaches we identify a second exosite within the protease-associated (PA) domain. We propose a model in which the PA domain assists optimal delivery of the substrate's C terminus to the active site for cleavage.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":"1871 6","pages":"Article 140946"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000602","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Annually, over 18 million disease cases and half a million deaths worldwide are estimated to be caused by Group A Streptococcus. ScpA (or C5a peptidase) is a well characterised member of the cell enveleope protease family, which possess a S8 subtilisin-like catalytic domain and a shared multi-domain architecture. ScpA cleaves complement factors C5a and C3a, impairing the function of these critical anaphylatoxins and disrupts complement-mediated innate immunity. Although the high resolution structure of ScpA is known, the details of how it recognises its substrate are only just emerging. Previous studies have identified a distant exosite on the 2nd fibronectin domain that plays an important role in recruitment via an interaction with the substrate core. Here, using a combination of solution NMR spectroscopy, mutagenesis with functional assays and computational approaches we identify a second exosite within the protease-associated (PA) domain. We propose a model in which the PA domain assists optimal delivery of the substrate's C terminus to the active site for cleavage.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.