Demogenomic inference from spatially and temporally heterogeneous samples

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nina Marchi, Adamandia Kapopoulou, Laurent Excoffier
{"title":"Demogenomic inference from spatially and temporally heterogeneous samples","authors":"Nina Marchi,&nbsp;Adamandia Kapopoulou,&nbsp;Laurent Excoffier","doi":"10.1111/1755-0998.13877","DOIUrl":null,"url":null,"abstract":"<p>Modern and ancient genomes are not necessarily drawn from homogeneous populations, as they may have been collected from different places and at different times. This heterogeneous sampling can be an issue for demographic inferences and results in biased demographic parameters and incorrect model choice if not properly considered. When explicitly accounted for, it can result in very complex models and high data dimensionality that are difficult to analyse. In this paper, we formally study the impact of such spatial and temporal sampling heterogeneity on demographic inference, and we introduce a way to circumvent this problem. To deal with structured samples without increasing the dimensionality of the site frequency spectrum (SFS), we introduce a new structured approach to the existing program <i>fastsimcoal2</i>. We assess the efficiency and relevance of this methodological update with simulated and modern human genomic data. We particularly focus on spatial and temporal heterogeneities to evidence the interest of this new SFS-based approach, which can be especially useful when handling scattered and ancient DNA samples, as in conservation genetics or archaeogenetics.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"24 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.13877","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13877","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern and ancient genomes are not necessarily drawn from homogeneous populations, as they may have been collected from different places and at different times. This heterogeneous sampling can be an issue for demographic inferences and results in biased demographic parameters and incorrect model choice if not properly considered. When explicitly accounted for, it can result in very complex models and high data dimensionality that are difficult to analyse. In this paper, we formally study the impact of such spatial and temporal sampling heterogeneity on demographic inference, and we introduce a way to circumvent this problem. To deal with structured samples without increasing the dimensionality of the site frequency spectrum (SFS), we introduce a new structured approach to the existing program fastsimcoal2. We assess the efficiency and relevance of this methodological update with simulated and modern human genomic data. We particularly focus on spatial and temporal heterogeneities to evidence the interest of this new SFS-based approach, which can be especially useful when handling scattered and ancient DNA samples, as in conservation genetics or archaeogenetics.

Abstract Image

来自空间和时间异质样本的人口基因组推断。
现代和古代的基因组不一定来自同质群体,因为它们可能是在不同的地方和不同的时间收集的。这种异质性抽样可能是人口统计推断的一个问题,如果不适当考虑,会导致有偏差的人口统计参数和错误的模型选择。如果明确说明,可能会导致非常复杂的模型和难以分析的高数据维度。在本文中,我们正式研究了这种时空采样异质性对人口统计推断的影响,并介绍了一种规避这一问题的方法。为了在不增加站点频谱(SFS)维数的情况下处理结构化样本,我们在现有程序fastsimcoal2中引入了一种新的结构化方法。我们用模拟和现代人类基因组数据评估了这一方法更新的效率和相关性。我们特别关注空间和时间的异质性,以证明这种新的基于SFS的方法的兴趣,它在处理零散和古老的DNA样本时尤其有用,如在保护遗传学或古遗传学中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信