Maksim Dolmat*, Veronika Kozlovskaya and Eugenia Kharlampieva*,
{"title":"Atomic Force Microscopy for Teaching Polymer Crystals and Polymer Blends","authors":"Maksim Dolmat*, Veronika Kozlovskaya and Eugenia Kharlampieva*, ","doi":"10.1021/acs.jchemed.3c00545","DOIUrl":null,"url":null,"abstract":"<p >The essential component of expanding an undergraduate curriculum is the inclusion of lab experiments in nanoscience and nanomaterials, which significantly impact health and the environment through their use in food, cosmetics, agriculture, and medicine. We designed a laboratory experiment based on the atomic force microscopy (AFM) analysis of the physical characteristics of polymer blends and crystals, including surface morphology, Young’s modulus, deformation, and stiffness. The laboratory exercise exposes students to the main aspects of the crystallization of polyethylene glycol and the formation of an immiscible polystyrene/polybutadiene blend, followed by optical microscopy and AFM characterization. In addition to providing information about the surface morphology and microstructure of the samples through AFM topography scanning, nanoindentation measurements allow for the mechanical characterization of materials with nanoscale resolution. Mechanical characterization offers students a broader application area where they can use their chemical understanding to regulate the material’s physical characteristics. AFM force curve mapping enables assessment of the components’ distribution in composite materials while analyzing each constituent independently with nanoscale precision. The versatility of AFM considerably increases the number of laboratory experiments that can be developed in undergraduate courses on nanoscience and nanomaterials. The knowledge acquired about polymer blending, crystallization, and their characterization at the nanoscale equips students with practical and transferable skills that they may apply in other chemistry and engineering classes to address real-world issues.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"100 10","pages":"4047–4055"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.3c00545","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The essential component of expanding an undergraduate curriculum is the inclusion of lab experiments in nanoscience and nanomaterials, which significantly impact health and the environment through their use in food, cosmetics, agriculture, and medicine. We designed a laboratory experiment based on the atomic force microscopy (AFM) analysis of the physical characteristics of polymer blends and crystals, including surface morphology, Young’s modulus, deformation, and stiffness. The laboratory exercise exposes students to the main aspects of the crystallization of polyethylene glycol and the formation of an immiscible polystyrene/polybutadiene blend, followed by optical microscopy and AFM characterization. In addition to providing information about the surface morphology and microstructure of the samples through AFM topography scanning, nanoindentation measurements allow for the mechanical characterization of materials with nanoscale resolution. Mechanical characterization offers students a broader application area where they can use their chemical understanding to regulate the material’s physical characteristics. AFM force curve mapping enables assessment of the components’ distribution in composite materials while analyzing each constituent independently with nanoscale precision. The versatility of AFM considerably increases the number of laboratory experiments that can be developed in undergraduate courses on nanoscience and nanomaterials. The knowledge acquired about polymer blending, crystallization, and their characterization at the nanoscale equips students with practical and transferable skills that they may apply in other chemistry and engineering classes to address real-world issues.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.