Elizabeth Stippell, Alexey V. Akimov* and Oleg V. Prezhdo*,
{"title":"PySyComp: A Symbolic Python Library for the Undergraduate Quantum Chemistry Course","authors":"Elizabeth Stippell, Alexey V. Akimov* and Oleg V. Prezhdo*, ","doi":"10.1021/acs.jchemed.2c00974","DOIUrl":null,"url":null,"abstract":"<p >We report an educational tool for the upper level undergraduate quantum chemistry or quantum physics course that uses a symbolic approach via the PySyComp Python library. The tool covers both time-independent and time-dependent quantum chemistry, with the latter rarely considered in the foundations course due to topic complexity. We use quantized Hamiltonian dynamics (QHD) that provides a simple extension of classical dynamics and captures key quantum effects. The PySyComp library can compute various concepts regarding the fundamental postulates of quantum mechanics, including normalized wave functions, expectation values, and commutators, which are at the core of solving the Heisenberg equations of motion. It provides a tool for students to experiment with simple models and explore the key quantum concepts, such as zero-point energy, tunneling, and decoherence.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"100 10","pages":"4077–4084"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00974","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report an educational tool for the upper level undergraduate quantum chemistry or quantum physics course that uses a symbolic approach via the PySyComp Python library. The tool covers both time-independent and time-dependent quantum chemistry, with the latter rarely considered in the foundations course due to topic complexity. We use quantized Hamiltonian dynamics (QHD) that provides a simple extension of classical dynamics and captures key quantum effects. The PySyComp library can compute various concepts regarding the fundamental postulates of quantum mechanics, including normalized wave functions, expectation values, and commutators, which are at the core of solving the Heisenberg equations of motion. It provides a tool for students to experiment with simple models and explore the key quantum concepts, such as zero-point energy, tunneling, and decoherence.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.