Towards clinical application of GlycA and GlycB for early detection of inflammation associated with (pre)diabetes and cardiovascular disease: recent evidence and updates.
Erik Fung, Eunice Y S Chan, Kwan Hung Ng, Ka Man Yu, Huijun Li, Yulan Wang
{"title":"Towards clinical application of GlycA and GlycB for early detection of inflammation associated with (pre)diabetes and cardiovascular disease: recent evidence and updates.","authors":"Erik Fung, Eunice Y S Chan, Kwan Hung Ng, Ka Man Yu, Huijun Li, Yulan Wang","doi":"10.1186/s12950-023-00358-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiometabolic diseases are associated with low-grade inflammation early in life and persists into old age. The long latency period presents opportunities for early detection, lifestyle modification and intervention. However, the performance of conventional biomarker assays to detect low-grade inflammation has been variable, particularly for early-stage cardiometabolic disorder including prediabetes and subclinical atherosclerotic vascular inflammation. During the last decade, the application of nuclear magnetic resonance (NMR) spectroscopy for metabolic profiling of biofluids in translational and epidemiological research has advanced to a stage approaching clinical application. Proton (<sup>1</sup>H)-NMR profiling induces no destructible physical changes to specimens, and generates quantitative signals from deconvoluted spectra that are highly repeatable and reproducible. Apart from quantitative analysis of amino acids, lipids/lipoproteins, metabolic intermediates and small proteins, <sup>1</sup>H-NMR technology is unique in being able to detect composite signals of acute-phase and low-grade inflammation indicated by glycosylated acetyls (GlycA) and N-acetylneuraminic acid (sialic acid) moieties (GlycB). Different from conventional immunoassays that target epitopes and are susceptible to conformational variation in protein structure and binding, GlycA and GlycB signals are stable over time, and maybe complementary as well as superior to high-sensitivity C-reactive protein and other inflammatory cytokines. Here we review the physicochemical principles behind <sup>1</sup>H-NMR profiling of GlycA and GlycB, and the available evidence supporting their potential clinical application for the prediction of incident (pre)diabetes, cardiovascular disease, and adverse outcomes.</p>","PeriodicalId":56120,"journal":{"name":"Journal of Inflammation-London","volume":"20 1","pages":"32"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12950-023-00358-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiometabolic diseases are associated with low-grade inflammation early in life and persists into old age. The long latency period presents opportunities for early detection, lifestyle modification and intervention. However, the performance of conventional biomarker assays to detect low-grade inflammation has been variable, particularly for early-stage cardiometabolic disorder including prediabetes and subclinical atherosclerotic vascular inflammation. During the last decade, the application of nuclear magnetic resonance (NMR) spectroscopy for metabolic profiling of biofluids in translational and epidemiological research has advanced to a stage approaching clinical application. Proton (1H)-NMR profiling induces no destructible physical changes to specimens, and generates quantitative signals from deconvoluted spectra that are highly repeatable and reproducible. Apart from quantitative analysis of amino acids, lipids/lipoproteins, metabolic intermediates and small proteins, 1H-NMR technology is unique in being able to detect composite signals of acute-phase and low-grade inflammation indicated by glycosylated acetyls (GlycA) and N-acetylneuraminic acid (sialic acid) moieties (GlycB). Different from conventional immunoassays that target epitopes and are susceptible to conformational variation in protein structure and binding, GlycA and GlycB signals are stable over time, and maybe complementary as well as superior to high-sensitivity C-reactive protein and other inflammatory cytokines. Here we review the physicochemical principles behind 1H-NMR profiling of GlycA and GlycB, and the available evidence supporting their potential clinical application for the prediction of incident (pre)diabetes, cardiovascular disease, and adverse outcomes.
期刊介绍:
Journal of Inflammation welcomes research submissions on all aspects of inflammation.
The five classical symptoms of inflammation, namely redness (rubor), swelling (tumour), heat (calor), pain (dolor) and loss of function (functio laesa), are only part of the story. The term inflammation is taken to include the full range of underlying cellular and molecular mechanisms involved, not only in the production of the inflammatory responses but, more importantly in clinical terms, in the healing process as well. Thus the journal covers molecular, cellular, animal and clinical studies, and related aspects of pharmacology, such as anti-inflammatory drug development, trials and therapeutic developments. It also considers publication of negative findings.
Journal of Inflammation aims to become the leading online journal on inflammation and, as online journals replace printed ones over the next decade, the main open access inflammation journal. Open access guarantees a larger audience, and thus impact, than any restricted access equivalent, and increasingly so, as the escalating costs of printed journals puts them outside University budgets. The unrestricted access to research findings in inflammation aids in promoting dynamic and productive dialogue between industrial and academic members of the inflammation research community, which plays such an important part in the development of future generations of anti-inflammatory therapies.