A semiparametric Bayesian model for comparing DNA copy numbers.

Brazilian journal of probability and statistics Pub Date : 2016-08-01 Epub Date: 2016-07-29 DOI:10.1214/15-bjps283
Luis Nieto-Barajas, Yuan Ji, Veerabhadran Baladandayuthapani
{"title":"A semiparametric Bayesian model for comparing DNA copy numbers.","authors":"Luis Nieto-Barajas, Yuan Ji, Veerabhadran Baladandayuthapani","doi":"10.1214/15-bjps283","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a two-step method for the analysis of copy number data. We first define the partitions of genome aberrations and conditional on the partitions we introduce a semiparametric Bayesian model for the analysis of multiple samples from patients with different subtypes of a disease. While the biological interest is to identify regions of differential copy numbers across disease subtypes, our model also includes sample-specific random effects that account for copy number alterations between different samples in the same disease subtype. We model the subtype and sample-specific effects using a random effects mixture model. The subtype's main effects are characterized by a mixture distribution whose components are assigned Dirichlet process priors. The performance of the proposed model is examined using simulated data as well as a breast cancer genomic data set.</p>","PeriodicalId":93916,"journal":{"name":"Brazilian journal of probability and statistics","volume":"30 3","pages":"345-365"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552905/pdf/nihms961909.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian journal of probability and statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/15-bjps283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/7/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a two-step method for the analysis of copy number data. We first define the partitions of genome aberrations and conditional on the partitions we introduce a semiparametric Bayesian model for the analysis of multiple samples from patients with different subtypes of a disease. While the biological interest is to identify regions of differential copy numbers across disease subtypes, our model also includes sample-specific random effects that account for copy number alterations between different samples in the same disease subtype. We model the subtype and sample-specific effects using a random effects mixture model. The subtype's main effects are characterized by a mixture distribution whose components are assigned Dirichlet process priors. The performance of the proposed model is examined using simulated data as well as a breast cancer genomic data set.

一种用于比较DNA拷贝数的半参数贝叶斯模型。
我们提出了一种分两步分析拷贝数数据的方法。我们首先定义了基因组畸变的分区,并在分区的条件下,我们引入了一个半参数贝叶斯模型来分析来自不同亚型疾病患者的多个样本。虽然生物学上的兴趣是识别不同疾病亚型的不同拷贝数区域,但我们的模型还包括样本特异性随机效应,这些效应解释了同一疾病亚型中不同样本之间拷贝数的变化。我们使用随机效应混合模型对亚型和样本特异性效应进行建模。该子类型的主要影响以混合分布为特征,其分量被分配给狄利克雷过程先验。使用模拟数据以及癌症基因组数据集来检查所提出的模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信