The gene expression signature of electrical stimulation in the human brain.

Snehajyoti Chatterjee, Yann Vanrobaeys, Annie I Gleason, Brian J Park, Shane A Heiney, Ariane E Rhone, Kirill V Nourski, Lucy Langmack, Budhaditya Basu, Utsav Mukherjee, Christopher K Kovach, Zsuzsanna Kocsis, Yukiko Kikuchi, Yaneri A Ayala, Christopher I Petkov, Marco M Hefti, Ethan Bahl, Jacob J Michaelson, Hiroto Kawasaki, Hiroyuki Oya, Matthew A Howard, Thomas Nickl-Jockschat, Li-Chun Lin, Ted Abel
{"title":"The gene expression signature of electrical stimulation in the human brain.","authors":"Snehajyoti Chatterjee, Yann Vanrobaeys, Annie I Gleason, Brian J Park, Shane A Heiney, Ariane E Rhone, Kirill V Nourski, Lucy Langmack, Budhaditya Basu, Utsav Mukherjee, Christopher K Kovach, Zsuzsanna Kocsis, Yukiko Kikuchi, Yaneri A Ayala, Christopher I Petkov, Marco M Hefti, Ethan Bahl, Jacob J Michaelson, Hiroto Kawasaki, Hiroyuki Oya, Matthew A Howard, Thomas Nickl-Jockschat, Li-Chun Lin, Ted Abel","doi":"10.1101/2023.09.21.558812","DOIUrl":null,"url":null,"abstract":"<p><p>Direct electrical stimulation has been used for decades as a gold standard clinical tool to map cognitive function in neurosurgery patients<sup>1-8</sup>. However, the molecular impact of electrical stimulation in the human brain is unknown. Here, using state-of-the-art transcriptomic and epigenomic sequencing techniques, we define the molecular changes in bulk tissue and at the single-cell level in the human cerebral cortex following direct electrical stimulation of the anterior temporal lobe in patients undergoing neurosurgery. Direct electrical stimulation surprisingly had a robust and consistent impact on the expression of genes related to microglia-specific cytokine activity, an effect that was replicated in mice. Using a newly developed deep learning computational tool, we further demonstrate cell type-specific molecular activation, which underscores the effects of electrical stimulation on gene expression in microglia. Taken together, this work challenges the notion that the immediate impact of electrical stimulation commonly used in the clinic has a primary effect on neuronal gene expression and reveals that microglia robustly respond to electrical stimulation, thus enabling these non-neuronal cells to sculpt and shape the activity of neuronal circuits in the human brain.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/61/nihpp-2023.09.21.558812v1.PMC10542502.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.21.558812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direct electrical stimulation has been used for decades as a gold standard clinical tool to map cognitive function in neurosurgery patients1-8. However, the molecular impact of electrical stimulation in the human brain is unknown. Here, using state-of-the-art transcriptomic and epigenomic sequencing techniques, we define the molecular changes in bulk tissue and at the single-cell level in the human cerebral cortex following direct electrical stimulation of the anterior temporal lobe in patients undergoing neurosurgery. Direct electrical stimulation surprisingly had a robust and consistent impact on the expression of genes related to microglia-specific cytokine activity, an effect that was replicated in mice. Using a newly developed deep learning computational tool, we further demonstrate cell type-specific molecular activation, which underscores the effects of electrical stimulation on gene expression in microglia. Taken together, this work challenges the notion that the immediate impact of electrical stimulation commonly used in the clinic has a primary effect on neuronal gene expression and reveals that microglia robustly respond to electrical stimulation, thus enabling these non-neuronal cells to sculpt and shape the activity of neuronal circuits in the human brain.

Abstract Image

Abstract Image

Abstract Image

活性诱导的基因在人脑中的表达。
活性诱导的基因表达是突触可塑性和大脑功能的基础。在这里,使用分子测序技术,我们定义了神经外科患者直接电刺激颞叶后,人脑组织和单细胞水平上的活性依赖性转录组学和表观基因组变化。与转录调控和小胶质细胞特异性细胞因子活性相关的基因表现出最大的诱导模式,揭示了人脑神经元激活的精确分子特征。关键发现:电刺激人类皮层可以识别活性依赖性基因表达特征。人脑中的神经元和小胶质细胞在电刺激后表现出不同的转录特征。单核染色质可及性研究揭示了小胶质细胞中细胞类型特异性表观基因组变化和特异性转录因子基序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信