Depth Injection Framework for RGBD Salient Object Detection

Shunyu Yao;Miao Zhang;Yongri Piao;Chaoyi Qiu;Huchuan Lu
{"title":"Depth Injection Framework for RGBD Salient Object Detection","authors":"Shunyu Yao;Miao Zhang;Yongri Piao;Chaoyi Qiu;Huchuan Lu","doi":"10.1109/TIP.2023.3315511","DOIUrl":null,"url":null,"abstract":"Depth data with a predominance of discriminative power in location is advantageous for accurate salient object detection (SOD). Existing RGBD SOD methods have focused on how to properly use depth information for complementary fusion with RGB data, having achieved great success. In this work, we attempt a far more ambitious use of the depth information by injecting the depth maps into the encoder in a single-stream model. Specifically, we propose a depth injection framework (DIF) equipped with an Injection Scheme (IS) and a Depth Injection Module (DIM). The proposed IS enhances the semantic representation of the RGB features in the encoder by directly injecting depth maps into the high-level encoder blocks, while helping our model maintain computational convenience. Our proposed DIM acts as a bridge between the depth maps and the hierarchical RGB features of the encoder and helps the information of two modalities complement and guide each other, contributing to a great fusion effect. Experimental results demonstrate that our proposed method can achieve state-of-the-art performance on six RGBD datasets. Moreover, our method can achieve excellent performance on RGBT SOD and our DIM can be easily applied to single-stream SOD models and the transformer architecture, proving a powerful generalization ability.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10258039/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Depth data with a predominance of discriminative power in location is advantageous for accurate salient object detection (SOD). Existing RGBD SOD methods have focused on how to properly use depth information for complementary fusion with RGB data, having achieved great success. In this work, we attempt a far more ambitious use of the depth information by injecting the depth maps into the encoder in a single-stream model. Specifically, we propose a depth injection framework (DIF) equipped with an Injection Scheme (IS) and a Depth Injection Module (DIM). The proposed IS enhances the semantic representation of the RGB features in the encoder by directly injecting depth maps into the high-level encoder blocks, while helping our model maintain computational convenience. Our proposed DIM acts as a bridge between the depth maps and the hierarchical RGB features of the encoder and helps the information of two modalities complement and guide each other, contributing to a great fusion effect. Experimental results demonstrate that our proposed method can achieve state-of-the-art performance on six RGBD datasets. Moreover, our method can achieve excellent performance on RGBT SOD and our DIM can be easily applied to single-stream SOD models and the transformer architecture, proving a powerful generalization ability.
RGBD突出目标检测的深度注入框架。
在位置上具有判别力优势的深度数据有利于精确的显著对象检测(SOD)。现有的RGBD-SOD方法专注于如何正确利用深度信息与RGB数据进行互补融合,取得了巨大的成功。在这项工作中,我们尝试通过在单个流模型中将深度图注入编码器来更雄心勃勃地使用深度信息。具体而言,我们提出了一种配备有注入方案(IS)和深度注入模块(DIM)的深度注入框架(DIF)。所提出的IS通过将深度图直接注入高级编码器块来增强编码器中RGB特征的语义表示,同时帮助我们的模型保持计算便利性。我们提出的DIM充当深度图和编码器的层次RGB特征之间的桥梁,并帮助两种模态的信息相互补充和引导,有助于实现良好的融合效果。实验结果表明,我们提出的方法可以在六个RGBD数据集上实现最先进的性能。此外,我们的方法可以在RGBT-SOD上获得优异的性能,我们的DIM可以很容易地应用于单流SOD模型和转换器架构,证明了强大的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信