Zhuoran Jiang, Yushi Chang, Zeyu Zhang, Fang-Fang Yin, Lei Ren
{"title":"Fast four-dimensional cone-beam computed tomography reconstruction using deformable convolutional networks.","authors":"Zhuoran Jiang, Yushi Chang, Zeyu Zhang, Fang-Fang Yin, Lei Ren","doi":"10.1002/mp.15806","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although four-dimensional cone-beam computed tomography (4D-CBCT) is valuable to provide onboard image guidance for radiotherapy of moving targets, it requires a long acquisition time to achieve sufficient image quality for target localization. To improve the utility, it is highly desirable to reduce the 4D-CBCT scanning time while maintaining high-quality images. Current motion-compensated methods are limited by slow speed and compensation errors due to the severe intraphase undersampling.</p><p><strong>Purpose: </strong>In this work, we aim to propose an alternative feature-compensated method to realize the fast 4D-CBCT with high-quality images.</p><p><strong>Methods: </strong>We proposed a feature-compensated deformable convolutional network (FeaCo-DCN) to perform interphase compensation in the latent feature space, which has not been explored by previous studies. In FeaCo-DCN, encoding networks extract features from each phase, and then, features of other phases are deformed to those of the target phase via deformable convolutional networks. Finally, a decoding network combines and decodes features from all phases to yield high-quality images of the target phase. The proposed FeaCo-DCN was evaluated using lung cancer patient data.</p><p><strong>Results: </strong>(1) FeaCo-DCN generated high-quality images with accurate and clear structures for a fast 4D-CBCT scan; (2) 4D-CBCT images reconstructed by FeaCo-DCN achieved 3D tumor localization accuracy within 2.5 mm; (3) image reconstruction is nearly real time; and (4) FeaCo-DCN achieved superior performance by all metrics compared to the top-ranked techniques in the AAPM SPARE Challenge.</p><p><strong>Conclusion: </strong>The proposed FeaCo-DCN is effective and efficient in reconstructing 4D-CBCT while reducing about 90% of the scanning time, which can be highly valuable for moving target localization in image-guided radiotherapy.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":"49 10","pages":"6461-6476"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588592/pdf/nihms-1817259.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.15806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Although four-dimensional cone-beam computed tomography (4D-CBCT) is valuable to provide onboard image guidance for radiotherapy of moving targets, it requires a long acquisition time to achieve sufficient image quality for target localization. To improve the utility, it is highly desirable to reduce the 4D-CBCT scanning time while maintaining high-quality images. Current motion-compensated methods are limited by slow speed and compensation errors due to the severe intraphase undersampling.
Purpose: In this work, we aim to propose an alternative feature-compensated method to realize the fast 4D-CBCT with high-quality images.
Methods: We proposed a feature-compensated deformable convolutional network (FeaCo-DCN) to perform interphase compensation in the latent feature space, which has not been explored by previous studies. In FeaCo-DCN, encoding networks extract features from each phase, and then, features of other phases are deformed to those of the target phase via deformable convolutional networks. Finally, a decoding network combines and decodes features from all phases to yield high-quality images of the target phase. The proposed FeaCo-DCN was evaluated using lung cancer patient data.
Results: (1) FeaCo-DCN generated high-quality images with accurate and clear structures for a fast 4D-CBCT scan; (2) 4D-CBCT images reconstructed by FeaCo-DCN achieved 3D tumor localization accuracy within 2.5 mm; (3) image reconstruction is nearly real time; and (4) FeaCo-DCN achieved superior performance by all metrics compared to the top-ranked techniques in the AAPM SPARE Challenge.
Conclusion: The proposed FeaCo-DCN is effective and efficient in reconstructing 4D-CBCT while reducing about 90% of the scanning time, which can be highly valuable for moving target localization in image-guided radiotherapy.