Interpreting single-step genomic evaluation as a neural network of three layers: pedigree, genotypes, and phenotypes.

IF 3.6 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Tianjing Zhao, Hao Cheng
{"title":"Interpreting single-step genomic evaluation as a neural network of three layers: pedigree, genotypes, and phenotypes.","authors":"Tianjing Zhao, Hao Cheng","doi":"10.1186/s12711-023-00838-7","DOIUrl":null,"url":null,"abstract":"<p><p>The single-step approach has become the most widely-used methodology for genomic evaluations when only a subset of phenotyped individuals in the pedigree are genotyped, where the genotypes for non-genotyped individuals are imputed based on gene contents (i.e., genotypes) of genotyped individuals through their pedigree relationships. We proposed a new method named single-step neural network with mixed models (NNMM) to represent single-step genomic evaluations as a neural network of three sequential layers: pedigree, genotypes, and phenotypes. These three sequential layers of information create a unified network instead of two separate steps, allowing the unobserved gene contents of non-genotyped individuals to be sampled based on pedigree, observed genotypes of genotyped individuals, and phenotypes. In addition to imputation of genotypes using all three sources of information, including phenotypes, genotypes, and pedigree, single-step NNMM provides a more flexible framework to allow nonlinear relationships between genotypes and phenotypes, and for individuals to be genotyped with different single-nucleotide polymorphism (SNP) panels. The single-step NNMM has been implemented in the software package \"JWAS'.</p>","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-023-00838-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The single-step approach has become the most widely-used methodology for genomic evaluations when only a subset of phenotyped individuals in the pedigree are genotyped, where the genotypes for non-genotyped individuals are imputed based on gene contents (i.e., genotypes) of genotyped individuals through their pedigree relationships. We proposed a new method named single-step neural network with mixed models (NNMM) to represent single-step genomic evaluations as a neural network of three sequential layers: pedigree, genotypes, and phenotypes. These three sequential layers of information create a unified network instead of two separate steps, allowing the unobserved gene contents of non-genotyped individuals to be sampled based on pedigree, observed genotypes of genotyped individuals, and phenotypes. In addition to imputation of genotypes using all three sources of information, including phenotypes, genotypes, and pedigree, single-step NNMM provides a more flexible framework to allow nonlinear relationships between genotypes and phenotypes, and for individuals to be genotyped with different single-nucleotide polymorphism (SNP) panels. The single-step NNMM has been implemented in the software package "JWAS'.

Abstract Image

将一步基因组评估解释为三层神经网络:谱系、基因型和表型。
当谱系中只有表型个体的子集被进行基因分型时,单步方法已成为最广泛使用的基因组评估方法,其中非基因分型个体的基因型是根据基因分型个人的基因含量(即基因型)通过其谱系关系估算的。我们提出了一种新的方法,称为混合模型单步神经网络(NNMM),将单步基因组评估表示为三个顺序层的神经网络:谱系、基因型和表型。这三个连续的信息层创建了一个统一的网络,而不是两个单独的步骤,允许根据谱系、观察到的基因型个体的基因型和表型对未观察到的非基因型个体基因内容进行采样。除了使用所有三种信息来源(包括表型、基因型和谱系)估算基因型外,单步NNMM还提供了一个更灵活的框架,允许基因型和表型之间的非线性关系,并允许用不同的单核苷酸多态性(SNP)组对个体进行基因分型。单步NNMM已在软件包“JWAS”中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics Selection Evolution
Genetics Selection Evolution 生物-奶制品与动物科学
CiteScore
6.50
自引率
9.80%
发文量
74
审稿时长
1 months
期刊介绍: Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信