{"title":"Interpreting single-step genomic evaluation as a neural network of three layers: pedigree, genotypes, and phenotypes.","authors":"Tianjing Zhao, Hao Cheng","doi":"10.1186/s12711-023-00838-7","DOIUrl":null,"url":null,"abstract":"<p><p>The single-step approach has become the most widely-used methodology for genomic evaluations when only a subset of phenotyped individuals in the pedigree are genotyped, where the genotypes for non-genotyped individuals are imputed based on gene contents (i.e., genotypes) of genotyped individuals through their pedigree relationships. We proposed a new method named single-step neural network with mixed models (NNMM) to represent single-step genomic evaluations as a neural network of three sequential layers: pedigree, genotypes, and phenotypes. These three sequential layers of information create a unified network instead of two separate steps, allowing the unobserved gene contents of non-genotyped individuals to be sampled based on pedigree, observed genotypes of genotyped individuals, and phenotypes. In addition to imputation of genotypes using all three sources of information, including phenotypes, genotypes, and pedigree, single-step NNMM provides a more flexible framework to allow nonlinear relationships between genotypes and phenotypes, and for individuals to be genotyped with different single-nucleotide polymorphism (SNP) panels. The single-step NNMM has been implemented in the software package \"JWAS'.</p>","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-023-00838-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The single-step approach has become the most widely-used methodology for genomic evaluations when only a subset of phenotyped individuals in the pedigree are genotyped, where the genotypes for non-genotyped individuals are imputed based on gene contents (i.e., genotypes) of genotyped individuals through their pedigree relationships. We proposed a new method named single-step neural network with mixed models (NNMM) to represent single-step genomic evaluations as a neural network of three sequential layers: pedigree, genotypes, and phenotypes. These three sequential layers of information create a unified network instead of two separate steps, allowing the unobserved gene contents of non-genotyped individuals to be sampled based on pedigree, observed genotypes of genotyped individuals, and phenotypes. In addition to imputation of genotypes using all three sources of information, including phenotypes, genotypes, and pedigree, single-step NNMM provides a more flexible framework to allow nonlinear relationships between genotypes and phenotypes, and for individuals to be genotyped with different single-nucleotide polymorphism (SNP) panels. The single-step NNMM has been implemented in the software package "JWAS'.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.