Towards Automated Pain Detection in Children using Facial and Electrodermal Activity.

CEUR workshop proceedings Pub Date : 2018-07-01
Xiaojing Xu, Büsra Tuğce Susam, Hooman Nezamfar, Damaris Diaz, Kenneth D Craig, Matthew S Goodwin, Murat Akcakaya, Jeannie S Huang, R de Sa Virginia
{"title":"Towards Automated Pain Detection in Children using Facial and Electrodermal Activity.","authors":"Xiaojing Xu,&nbsp;Büsra Tuğce Susam,&nbsp;Hooman Nezamfar,&nbsp;Damaris Diaz,&nbsp;Kenneth D Craig,&nbsp;Matthew S Goodwin,&nbsp;Murat Akcakaya,&nbsp;Jeannie S Huang,&nbsp;R de Sa Virginia","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately determining pain levels in children is difficult, even for trained professionals and parents. Facial activity and electro- dermal activity (EDA) provide rich information about pain, and both have been used in automated pain detection. In this paper, we discuss preliminary steps towards fusing models trained on video and EDA features respectively. We compare fusion models using original video features and those using transferred video features which are less sensitive to environmental changes. We demonstrate the benefit of the fusion and the transferred video features with a special test case involving domain adaptation and improved performance relative to using EDA and video features alone.</p>","PeriodicalId":72554,"journal":{"name":"CEUR workshop proceedings","volume":"2142 ","pages":"208-211"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352962/pdf/nihms-1001656.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEUR workshop proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately determining pain levels in children is difficult, even for trained professionals and parents. Facial activity and electro- dermal activity (EDA) provide rich information about pain, and both have been used in automated pain detection. In this paper, we discuss preliminary steps towards fusing models trained on video and EDA features respectively. We compare fusion models using original video features and those using transferred video features which are less sensitive to environmental changes. We demonstrate the benefit of the fusion and the transferred video features with a special test case involving domain adaptation and improved performance relative to using EDA and video features alone.

Abstract Image

Abstract Image

使用面部和皮肤电活动实现儿童疼痛的自动检测。
即使是受过培训的专业人员和家长,也很难准确确定儿童的疼痛程度。面部活动和皮肤电活动(EDA)提供了关于疼痛的丰富信息,并且两者都已被用于自动疼痛检测。在本文中,我们分别讨论了融合基于视频和EDA特征训练的模型的初步步骤。我们比较了使用原始视频特征的融合模型和使用对环境变化不太敏感的转移视频特征的模型。我们通过一个特殊的测试案例展示了融合和传输的视频特征的好处,该测试案例涉及领域自适应,并相对于单独使用EDA和视频特征提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信