QPPLab: A generally applicable software package for detecting, analyzing, and visualizing large-scale quasiperiodic spatiotemporal patterns (QPPs) of brain activity.

Nan Xu, Behnaz Yousefi, Nmachi Anumba, Theodore J LaGrow, Xiaodi Zhang, Shella Keilholz
{"title":"QPPLab: A generally applicable software package for detecting, analyzing, and visualizing large-scale quasiperiodic spatiotemporal patterns (QPPs) of brain activity.","authors":"Nan Xu, Behnaz Yousefi, Nmachi Anumba, Theodore J LaGrow, Xiaodi Zhang, Shella Keilholz","doi":"10.1101/2023.09.25.559086","DOIUrl":null,"url":null,"abstract":"<p><p>Quasi-periodic patterns (QPPs) are prominent spatiotemporal brain dynamics observed in functional neuroimaging data, reflecting the alternation of high and low activity across brain regions and their propagation along cortical gradients. QPPs have been linked to neural processes such as attention, arousal fluctuations, and cognitive function. Despite their significance, existing QPP analysis tools are limited by study-specific parameters and complex workflows. To address these challenges, we present <b><i>QPPLab</i></b> , an open-source MATLAB-based toolbox for detecting, analyzing, and visualizing QPPs from fMRI time series. QPPLab integrates correlation-based iterative algorithms, supports customizable parameter settings, and features automated workflows to simplify analysis. Processing times vary depending on dataset size and the selected mode, with the fast detection mode completing analyses that can be 4-6 times faster than the robust detection mode. Results include spatiotemporal templates of QPPs, sliding correlation time courses, and functional connectivity maps. By reducing manual parameter adjustments and providing user-friendly tools, QPPLab enables researchers to efficiently study QPPs across diverse datasets and species, advancing our understanding of intrinsic brain dynamics.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557593/pdf/nihpp-2023.09.25.559086v1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.25.559086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-periodic patterns (QPPs) are prominent spatiotemporal brain dynamics observed in functional neuroimaging data, reflecting the alternation of high and low activity across brain regions and their propagation along cortical gradients. QPPs have been linked to neural processes such as attention, arousal fluctuations, and cognitive function. Despite their significance, existing QPP analysis tools are limited by study-specific parameters and complex workflows. To address these challenges, we present QPPLab , an open-source MATLAB-based toolbox for detecting, analyzing, and visualizing QPPs from fMRI time series. QPPLab integrates correlation-based iterative algorithms, supports customizable parameter settings, and features automated workflows to simplify analysis. Processing times vary depending on dataset size and the selected mode, with the fast detection mode completing analyses that can be 4-6 times faster than the robust detection mode. Results include spatiotemporal templates of QPPs, sliding correlation time courses, and functional connectivity maps. By reducing manual parameter adjustments and providing user-friendly tools, QPPLab enables researchers to efficiently study QPPs across diverse datasets and species, advancing our understanding of intrinsic brain dynamics.

QPPLab:一个普遍适用的软件包,用于检测、分析和可视化大脑活动的大规模准周期时空模式(QPP)。
在功能性神经成像数据中检测到的一个突出的大脑动力学过程是大尺度准周期模式(QPP),它显示出沿着大脑皮层梯度的时空传播。QPP与与注意力和唤醒波动相关的次流神经活动有关,并已在不同物种的静息和任务诱发大脑中被发现。开发了几种QPP检测和分析工具,用于研究特定参数方法的不同应用。该MATLAB包提供了一个简化且用户友好的通用工具箱,用于检测、分析和可视化大脑fMRI时间序列中的QPP。本文描述了该软件的功能,并介绍了它在任何大脑数据集上的易用性。元数据:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信