Objectives: Despite nearly universal prenatal ultrasound screening programs, congenital heart defects (CHD) are still missed, which may result in severe morbidity or even death. Deep machine learning (DL) can automate image recognition from ultrasound. The main aim of this study was to assess the performance of a previously developed DL model, trained on images from a tertiary center, using fetal ultrasound images obtained during the second-trimester standard anomaly scan in a low-risk population. A secondary aim was to compare initial screening diagnosis, which made use of live imaging at the point-of-care, with diagnosis by clinicians evaluating only stored images.
Methods: All pregnancies with isolated severe CHD in the Northwestern region of The Netherlands between 2015 and 2016 with available stored images were evaluated, as well as a sample of normal fetuses' examinations from the same region and time period. We compared the accuracy of the initial clinical diagnosis (made in real time with access to live imaging) with that of the model (which had only stored imaging available) and with the performance of three blinded human experts who had access only to the stored images (like the model). We analyzed performance according to ultrasound study characteristics, such as duration and quality (scored independently by investigators), number of stored images and availability of screening views.
Results: A total of 42 normal fetuses and 66 cases of isolated CHD at birth were analyzed. Of the abnormal cases, 31 were missed and 35 were detected at the time of the clinical anatomy scan (sensitivity, 53%). Model sensitivity and specificity were 91% and 78%, respectively. Blinded human experts (n = 3) achieved mean ± SD sensitivity and specificity of 55 ± 10% (range, 47-67%) and 71 ± 13% (range, 57-83%), respectively. There was a statistically significant difference in model correctness according to expert-graded image quality (P = 0.03). The abnormal cases included 19 lesions that the model had not encountered during its training; the model's performance in these cases (16/19 correct) was not statistically significantly different from that for previously encountered lesions (P = 0.41).
期刊介绍:
Ultrasound in Obstetrics & Gynecology (UOG) is the official journal of the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) and is considered the foremost international peer-reviewed journal in the field. It publishes cutting-edge research that is highly relevant to clinical practice, which includes guidelines, expert commentaries, consensus statements, original articles, and systematic reviews. UOG is widely recognized and included in prominent abstract and indexing databases such as Index Medicus and Current Contents.