{"title":"Myricetin causes site-specific DNA damage via reactive oxygen species generation by redox interactions with copper ions","authors":"Yuichiro Hirao , Hatasu Kobayashi , Yurie Mori , Shinya Kato , Shosuke Kawanishi , Mariko Murata , Shinji Oikawa","doi":"10.1016/j.mrgentox.2023.503694","DOIUrl":null,"url":null,"abstract":"<div><p>Myricetin (MYR), found in tea and berries, may have preventive effects on diseases, including Alzheimer’s disease and cancer. However, MYR is also a mutagen, inducing DNA damage in the presence of metal ions. We have studied the molecular mechanisms of DNA damage by MYR in the presence of Cu(II) (MYR+Cu). Using <sup>32</sup>P-5′-end-labeled DNA fragments, we analyzed site-specific DNA damage caused by MYR+Cu. MYR+Cu caused concentration-dependent DNA strand breaks and base alterations, leading to cleavage of DNA at thymine, cytosine, and guanine nucleotides. Formation of the oxidative DNA damage indicator, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), in calf thymus DNA was increased by MYR+Cu. The production of 8-oxodG in MYR-treated HL-60 cells was significantly higher than in HP100 cells, which are more resistant to H<sub>2</sub>O<sub>2</sub> than are HL-60 cells. Reactive oxygen species (ROS) scavengers were used to elucidate the mechanism of DNA damage. DNA damage was not inhibited by typical free hydroxyl radical (<sup>•</sup>OH) scavengers such as ethanol, mannitol, or sodium formate. However, methional, catalase, and bathocuproine inhibited DNA damage induced by MYR+Cu. These results suggest that H<sub>2</sub>O<sub>2</sub>, Cu(I), and ROS other than <sup>•</sup>OH are involved in MYR+Cu-induced DNA damage. We conclude that the Cu(I)/Cu(II) redox cycle and concomitant H<sub>2</sub>O<sub>2</sub> production via autoxidation of MYR generate a complex of H<sub>2</sub>O<sub>2</sub> and Cu(I), probably Cu(I)-hydroperoxide, which induces oxidative DNA damage.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"891 ","pages":"Article 503694"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571823001122","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Myricetin (MYR), found in tea and berries, may have preventive effects on diseases, including Alzheimer’s disease and cancer. However, MYR is also a mutagen, inducing DNA damage in the presence of metal ions. We have studied the molecular mechanisms of DNA damage by MYR in the presence of Cu(II) (MYR+Cu). Using 32P-5′-end-labeled DNA fragments, we analyzed site-specific DNA damage caused by MYR+Cu. MYR+Cu caused concentration-dependent DNA strand breaks and base alterations, leading to cleavage of DNA at thymine, cytosine, and guanine nucleotides. Formation of the oxidative DNA damage indicator, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), in calf thymus DNA was increased by MYR+Cu. The production of 8-oxodG in MYR-treated HL-60 cells was significantly higher than in HP100 cells, which are more resistant to H2O2 than are HL-60 cells. Reactive oxygen species (ROS) scavengers were used to elucidate the mechanism of DNA damage. DNA damage was not inhibited by typical free hydroxyl radical (•OH) scavengers such as ethanol, mannitol, or sodium formate. However, methional, catalase, and bathocuproine inhibited DNA damage induced by MYR+Cu. These results suggest that H2O2, Cu(I), and ROS other than •OH are involved in MYR+Cu-induced DNA damage. We conclude that the Cu(I)/Cu(II) redox cycle and concomitant H2O2 production via autoxidation of MYR generate a complex of H2O2 and Cu(I), probably Cu(I)-hydroperoxide, which induces oxidative DNA damage.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.