Yang Ni, Francesco C Stingo, Veerabhadran Baladandayuthapani
{"title":"Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure.","authors":"Yang Ni, Francesco C Stingo, Veerabhadran Baladandayuthapani","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce Bayesian Gaussian graphical models with covariates (GGMx), a class of multivariate Gaussian distributions with covariate-dependent sparse precision matrix. We propose a general construction of a functional mapping from the covariate space to the cone of sparse positive definite matrices, which encompasses many existing graphical models for heterogeneous settings. Our methodology is based on a novel mixture prior for precision matrices with a non-local component that admits attractive theoretical and empirical properties. The flexible formulation of GGMx allows both the strength and the sparsity pattern of the precision matrix (hence the graph structure) change with the covariates. Posterior inference is carried out with a carefully designed Markov chain Monte Carlo algorithm, which ensures the positive definiteness of sparse precision matrices at any given covariates' values. Extensive simulations and a case study in cancer genomics demonstrate the utility of the proposed model.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce Bayesian Gaussian graphical models with covariates (GGMx), a class of multivariate Gaussian distributions with covariate-dependent sparse precision matrix. We propose a general construction of a functional mapping from the covariate space to the cone of sparse positive definite matrices, which encompasses many existing graphical models for heterogeneous settings. Our methodology is based on a novel mixture prior for precision matrices with a non-local component that admits attractive theoretical and empirical properties. The flexible formulation of GGMx allows both the strength and the sparsity pattern of the precision matrix (hence the graph structure) change with the covariates. Posterior inference is carried out with a carefully designed Markov chain Monte Carlo algorithm, which ensures the positive definiteness of sparse precision matrices at any given covariates' values. Extensive simulations and a case study in cancer genomics demonstrate the utility of the proposed model.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.