NeighborNet: improved algorithms and implementation.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2023-09-20 eCollection Date: 2023-01-01 DOI:10.3389/fbinf.2023.1178600
David Bryant, Daniel H Huson
{"title":"NeighborNet: improved algorithms and implementation.","authors":"David Bryant,&nbsp;Daniel H Huson","doi":"10.3389/fbinf.2023.1178600","DOIUrl":null,"url":null,"abstract":"<p><p>NeighborNet constructs phylogenetic networks to visualize distance data. It is a popular method used in a wide range of applications. While several studies have investigated its mathematical features, here we focus on computational aspects. The algorithm operates in three steps. We present a new simplified formulation of the first step, which aims at computing a circular ordering. We provide the first technical description of the second step, the estimation of split weights. We review the third step by constructing and drawing the network. Finally, we discuss how the networks might best be interpreted, review related approaches, and present some open questions.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"3 ","pages":"1178600"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2023.1178600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

NeighborNet constructs phylogenetic networks to visualize distance data. It is a popular method used in a wide range of applications. While several studies have investigated its mathematical features, here we focus on computational aspects. The algorithm operates in three steps. We present a new simplified formulation of the first step, which aims at computing a circular ordering. We provide the first technical description of the second step, the estimation of split weights. We review the third step by constructing and drawing the network. Finally, we discuss how the networks might best be interpreted, review related approaches, and present some open questions.

Abstract Image

Abstract Image

Abstract Image

NeighborNet:改进的算法和实现。
NeighborNet构建系统发育网络以可视化距离数据。这是一种广泛应用的流行方法。虽然一些研究已经调查了它的数学特征,但这里我们关注的是计算方面。该算法分为三个步骤。我们提出了第一步的一个新的简化公式,旨在计算循环排序。我们提供了第二步的第一个技术描述,即分割权重的估计。我们通过构建和绘制网络来回顾第三步。最后,我们讨论了如何最好地解释网络,回顾了相关的方法,并提出了一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信