{"title":"Maximum Matchings in Geometric Intersection Graphs.","authors":"Édouard Bonnet, Sergio Cabello, Wolfgang Mulzer","doi":"10.1007/s00454-023-00564-3","DOIUrl":null,"url":null,"abstract":"<p><p>Let <i>G</i> be an intersection graph of <i>n</i> geometric objects in the plane. We show that a maximum matching in <i>G</i> can be found in <math><mrow><mi>O</mi><mspace></mspace><mo>(</mo><msup><mi>ρ</mi><mrow><mn>3</mn><mi>ω</mi><mo>/</mo><mn>2</mn></mrow></msup><msup><mi>n</mi><mrow><mi>ω</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math> time with high probability, where <math><mi>ρ</mi></math> is the density of the geometric objects and <math><mrow><mi>ω</mi><mo>></mo><mn>2</mn></mrow></math> is a constant such that <math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math> matrices can be multiplied in <math><mrow><mi>O</mi><mo>(</mo><msup><mi>n</mi><mi>ω</mi></msup><mo>)</mo></mrow></math> time. The same result holds for any subgraph of <i>G</i>, as long as a geometric representation is at hand. For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian elimination, with the fact that geometric intersection graphs have small separators. We also show that in many interesting cases, the maximum matching problem in a general geometric intersection graph can be reduced to the case of bounded density. In particular, a maximum matching in the intersection graph of any family of translates of a convex object in the plane can be found in <math><mrow><mi>O</mi><mo>(</mo><msup><mi>n</mi><mrow><mi>ω</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math> time with high probability, and a maximum matching in the intersection graph of a family of planar disks with radii in <math><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>Ψ</mi><mo>]</mo></mrow></math> can be found in <math><mrow><mi>O</mi><mspace></mspace><mo>(</mo><msup><mi>Ψ</mi><mn>6</mn></msup><msup><mo>log</mo><mn>11</mn></msup><mspace></mspace><mi>n</mi><mo>+</mo><msup><mi>Ψ</mi><mrow><mn>12</mn><mi>ω</mi></mrow></msup><msup><mi>n</mi><mrow><mi>ω</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math> time with high probability.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"70 3","pages":"550-579"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550895/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00564-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 7
Abstract
Let G be an intersection graph of n geometric objects in the plane. We show that a maximum matching in G can be found in time with high probability, where is the density of the geometric objects and is a constant such that matrices can be multiplied in time. The same result holds for any subgraph of G, as long as a geometric representation is at hand. For this, we combine algebraic methods, namely computing the rank of a matrix via Gaussian elimination, with the fact that geometric intersection graphs have small separators. We also show that in many interesting cases, the maximum matching problem in a general geometric intersection graph can be reduced to the case of bounded density. In particular, a maximum matching in the intersection graph of any family of translates of a convex object in the plane can be found in time with high probability, and a maximum matching in the intersection graph of a family of planar disks with radii in can be found in time with high probability.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.