{"title":"N6-methyladenosine modified lncRNAs signature for stratification of biochemical recurrence in prostate cancer.","authors":"Yingke Liang, Wenjun Yin, Zhouda Cai, Hongwei Luo, Qinwei Liu, Chuanfan Zhong, Jiahong Chen, Zhuoyuan Lin, Yaqiang Huang, Zhenguo Liang, Junhong Deng, Weide Zhong, Chao Cai, Jianming Lu","doi":"10.1007/s00439-023-02603-8","DOIUrl":null,"url":null,"abstract":"<p><p>Nonmutational epigenetic reprogramming is a crucial mechanism contributing to the pronounced heterogeneity of prostate cancer (PCa). Among these mechanisms, N6-methyladenosine (m6A)-modified long non-coding RNAs (lncRNAs) have emerged as key players. However, the precise roles of m6A-modified lncRNAs in PCa remain to be elucidated. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted on primary and metastatic PCa samples, leading to the identification of 21 lncRNAs exhibiting differential methylation and expression patterns. We further established a PCa prognostic signature, named m6A-modified lncRNA score (mLs), based on 9 differential methylated lncRNAs in 4 multicenter cohorts. The high mLs score cohort exhibited a tendency for earlier biochemical recurrence (BCR) compared to the low mLs score cohort. Remarkably, the predictive performance of the mLs score surpassed that of five previously reported lncRNA-based signatures. Functional enrichment analysis underscored a negative correlation between the mLs score and lipid metabolism. Additionally, through MeRIP-qPCR, we pinpointed a hub gene, MIR210HG, which was validated through in vitro and in vivo experiments. These findings collectively illuminate the landscape of m6A-methylated lncRNAs in PCa tissue via MeRIP-seq and harness this information to prognosticate PCa outcomes using the mLs score. Furthermore, our study validates, both experimentally and mechanistically, the facilitative role of MIR210HG in driving PCa progression.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-023-02603-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonmutational epigenetic reprogramming is a crucial mechanism contributing to the pronounced heterogeneity of prostate cancer (PCa). Among these mechanisms, N6-methyladenosine (m6A)-modified long non-coding RNAs (lncRNAs) have emerged as key players. However, the precise roles of m6A-modified lncRNAs in PCa remain to be elucidated. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted on primary and metastatic PCa samples, leading to the identification of 21 lncRNAs exhibiting differential methylation and expression patterns. We further established a PCa prognostic signature, named m6A-modified lncRNA score (mLs), based on 9 differential methylated lncRNAs in 4 multicenter cohorts. The high mLs score cohort exhibited a tendency for earlier biochemical recurrence (BCR) compared to the low mLs score cohort. Remarkably, the predictive performance of the mLs score surpassed that of five previously reported lncRNA-based signatures. Functional enrichment analysis underscored a negative correlation between the mLs score and lipid metabolism. Additionally, through MeRIP-qPCR, we pinpointed a hub gene, MIR210HG, which was validated through in vitro and in vivo experiments. These findings collectively illuminate the landscape of m6A-methylated lncRNAs in PCa tissue via MeRIP-seq and harness this information to prognosticate PCa outcomes using the mLs score. Furthermore, our study validates, both experimentally and mechanistically, the facilitative role of MIR210HG in driving PCa progression.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.