{"title":"Management of COVID-19 healthcare waste based on the circular economy hierarchy: A critical review.","authors":"Evangelos A Voudrias","doi":"10.1177/0734242X231198424","DOIUrl":null,"url":null,"abstract":"<p><p>The overall objective of this work was to conduct a critical literature review on the application of the circular economy (CE) hierarchy for the management of COVID-19 healthcare waste (HCW). To describe the problem created by COVID-19 HCW, first, the subsystems of the overall management system, including generation, segregation, classification, storage, collection, transport, treatment and disposal, were reviewed and briefly described. Then, the CE hierarchy using the 10R typology was adapted to the management of COVID-19 HCW and included the strategies Refuse, Reduce, Resell/Reuse, Repair, Reprocess, Refurbish, Remanufacture, Repurpose, Recycle and Recover (energy). Disposal was added as a sink of residues from the CE strategies. Using the detailed 10R CE hierarchy for COVID-19 HCW management is the novelty of this review. It was concluded that R-strategy selection depends on its position in the CE hierarchy and medical item criticality and value. Indicative HCW components, which can be managed by each R-strategy, were compiled, but creating value by recovering infectious downgraded materials contaminated with body fluids and tissues is not currently possible. Therefore, after applying the circular solutions, the end of pipe treatment and disposal would be necessary to close material cycles at the end of their life cycles. Addressing the risks, knowledge gaps and policy recommendations of this article may help to combat COVID-19 and future pandemics without creating environmental crises.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"977-996"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X231198424","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The overall objective of this work was to conduct a critical literature review on the application of the circular economy (CE) hierarchy for the management of COVID-19 healthcare waste (HCW). To describe the problem created by COVID-19 HCW, first, the subsystems of the overall management system, including generation, segregation, classification, storage, collection, transport, treatment and disposal, were reviewed and briefly described. Then, the CE hierarchy using the 10R typology was adapted to the management of COVID-19 HCW and included the strategies Refuse, Reduce, Resell/Reuse, Repair, Reprocess, Refurbish, Remanufacture, Repurpose, Recycle and Recover (energy). Disposal was added as a sink of residues from the CE strategies. Using the detailed 10R CE hierarchy for COVID-19 HCW management is the novelty of this review. It was concluded that R-strategy selection depends on its position in the CE hierarchy and medical item criticality and value. Indicative HCW components, which can be managed by each R-strategy, were compiled, but creating value by recovering infectious downgraded materials contaminated with body fluids and tissues is not currently possible. Therefore, after applying the circular solutions, the end of pipe treatment and disposal would be necessary to close material cycles at the end of their life cycles. Addressing the risks, knowledge gaps and policy recommendations of this article may help to combat COVID-19 and future pandemics without creating environmental crises.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.