On prime powers in linear recurrence sequences

IF 0.5 Q3 MATHEMATICS
Japhet Odjoumani, Volker Ziegler
{"title":"On prime powers in linear recurrence sequences","authors":"Japhet Odjoumani,&nbsp;Volker Ziegler","doi":"10.1007/s40316-021-00163-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the Diophantine equation <span>\\(U_n=p^x\\)</span> where <span>\\(U_n\\)</span> is a linear recurrence sequence, <i>p</i> is a prime number, and <i>x</i> is a positive integer. Under some technical hypotheses on <span>\\(U_n\\)</span>, we show that, for any <i>p</i> outside of an effectively computable finite set of prime numbers, there exists at most one solution (<i>n</i>, <i>x</i>) to that Diophantine equation. We compute this exceptional set for the Tribonacci sequence and for the Lucas sequence plus one.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"47 2","pages":"349 - 366"},"PeriodicalIF":0.5000,"publicationDate":"2021-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-021-00163-9","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-021-00163-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we consider the Diophantine equation \(U_n=p^x\) where \(U_n\) is a linear recurrence sequence, p is a prime number, and x is a positive integer. Under some technical hypotheses on \(U_n\), we show that, for any p outside of an effectively computable finite set of prime numbers, there exists at most one solution (nx) to that Diophantine equation. We compute this exceptional set for the Tribonacci sequence and for the Lucas sequence plus one.

关于线性递推序列的素数幂。
本文考虑丢番图方程Un=px,其中Un是线性递推序列,p是素数,x是正整数。在Un的一些技术假设下,我们证明,对于有效可计算的有限素数集之外的任何p,该丢番图方程最多存在一个解(n,x)。我们为Tribonacci序列和Lucas序列加1计算这个例外集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信