Predicting variable-length paths in networked systems using multi-order generative models.

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Applied Network Science Pub Date : 2023-01-01 Epub Date: 2023-09-22 DOI:10.1007/s41109-023-00596-x
Christoph Gote, Giona Casiraghi, Frank Schweitzer, Ingo Scholtes
{"title":"Predicting variable-length paths in networked systems using multi-order generative models.","authors":"Christoph Gote, Giona Casiraghi, Frank Schweitzer, Ingo Scholtes","doi":"10.1007/s41109-023-00596-x","DOIUrl":null,"url":null,"abstract":"<p><p>Apart from nodes and links, for many networked systems, we have access to data on paths, i.e., collections of temporally ordered variable-length node sequences that are constrained by the system's topology. Understanding the patterns in such data is key to advancing our understanding of the structure and dynamics of complex systems. Moreover, the ability to accurately model and predict paths is important for engineered systems, e.g., to optimise supply chains or provide smart mobility services. Here, we introduce MOGen, a generative modelling framework that enables both next-element and out-of-sample prediction in paths with high accuracy and consistency. It features a model selection approach that automatically determines the optimal model directly from data, effectively making MOGen parameter-free. Using empirical data, we show that our method outperforms state-of-the-art sequence modelling techniques. We further introduce a mathematical formalism that links higher-order models of paths to transition matrices of random walks in multi-layer networks.</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516819/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41109-023-00596-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

Apart from nodes and links, for many networked systems, we have access to data on paths, i.e., collections of temporally ordered variable-length node sequences that are constrained by the system's topology. Understanding the patterns in such data is key to advancing our understanding of the structure and dynamics of complex systems. Moreover, the ability to accurately model and predict paths is important for engineered systems, e.g., to optimise supply chains or provide smart mobility services. Here, we introduce MOGen, a generative modelling framework that enables both next-element and out-of-sample prediction in paths with high accuracy and consistency. It features a model selection approach that automatically determines the optimal model directly from data, effectively making MOGen parameter-free. Using empirical data, we show that our method outperforms state-of-the-art sequence modelling techniques. We further introduce a mathematical formalism that links higher-order models of paths to transition matrices of random walks in multi-layer networks.

Abstract Image

Abstract Image

Abstract Image

使用多阶生成模型预测网络系统中的可变长度路径。
除了节点和链路,对于许多联网系统,我们还可以访问路径上的数据,即受系统拓扑约束的时间有序可变长度节点序列的集合。了解这些数据中的模式是推进我们对复杂系统结构和动力学理解的关键。此外,准确建模和预测路径的能力对于工程系统很重要,例如,优化供应链或提供智能移动服务。在这里,我们介绍了MOGen,这是一种生成性建模框架,能够在路径中实现下一个元素和样本外预测,具有高精度和一致性。它采用了一种模型选择方法,可以直接从数据中自动确定最佳模型,有效地使MOGen参数自由。使用经验数据,我们表明我们的方法优于最先进的序列建模技术。我们进一步引入了一种数学形式,将路径的高阶模型与多层网络中随机游动的转移矩阵联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Network Science
Applied Network Science Multidisciplinary-Multidisciplinary
CiteScore
4.60
自引率
4.50%
发文量
74
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信